CAPS Research





Our Mission
CAPS's mission is to develop and demonstrate techniques for the numerical analysis and prediction of high-impact local weather and environmental conditions, with emphasis on the assimilation of observations from Doppler radars and other advanced in-situ and remote sensing systems.
CAPS conducts a broad-based program of basic and applied storm-scale research, and its award-winning Advanced Regional Prediction System (ARPS) is used worldwide.
CAPS strives to be the world leader in convective-scale data assimilation and numerical weather prediction, providing a venue for exploring bold new ideas, attracting the best scientists and students, and facilitating the transfer of knowledge and technology to academia, government and industry.