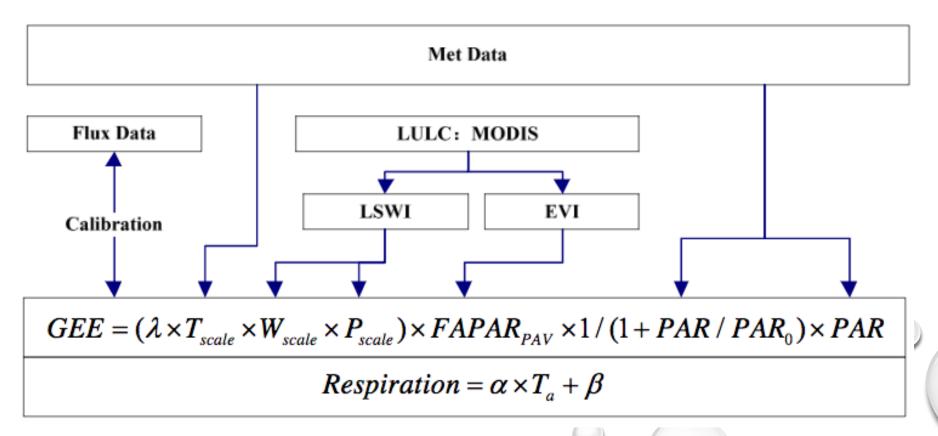
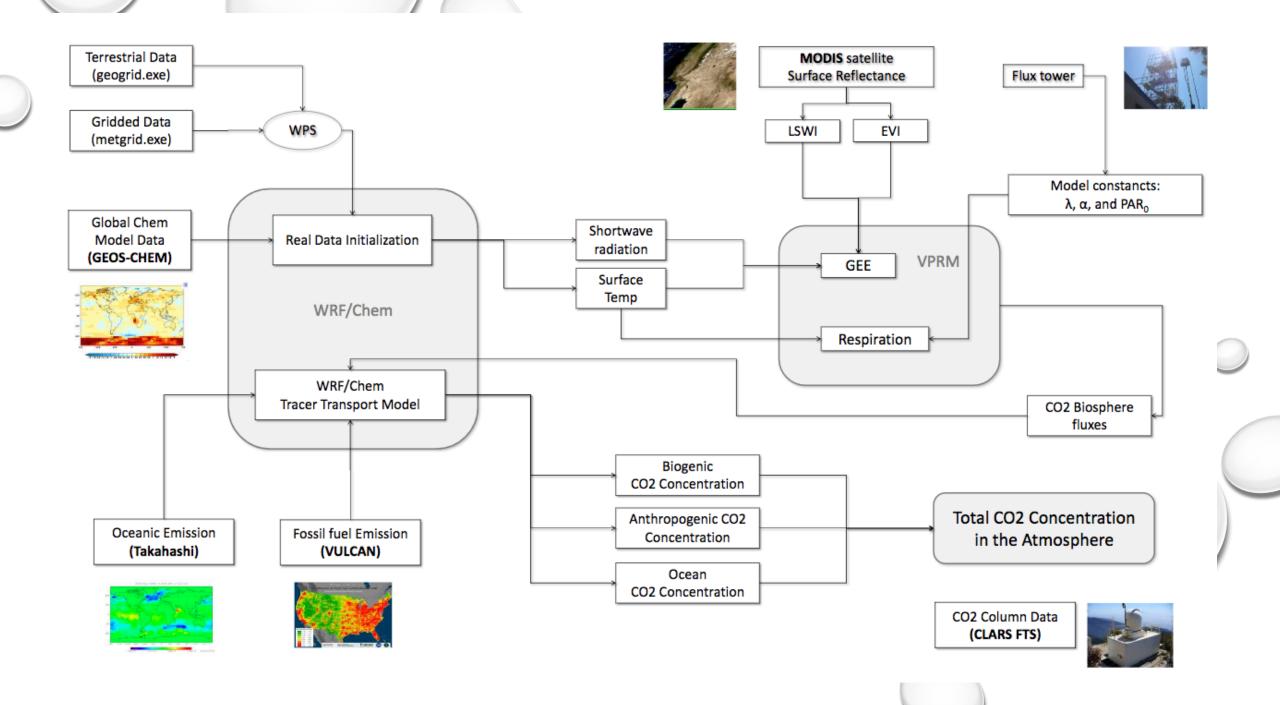

SIMULATE CO₂ USING WRF/CHEM-VPRM

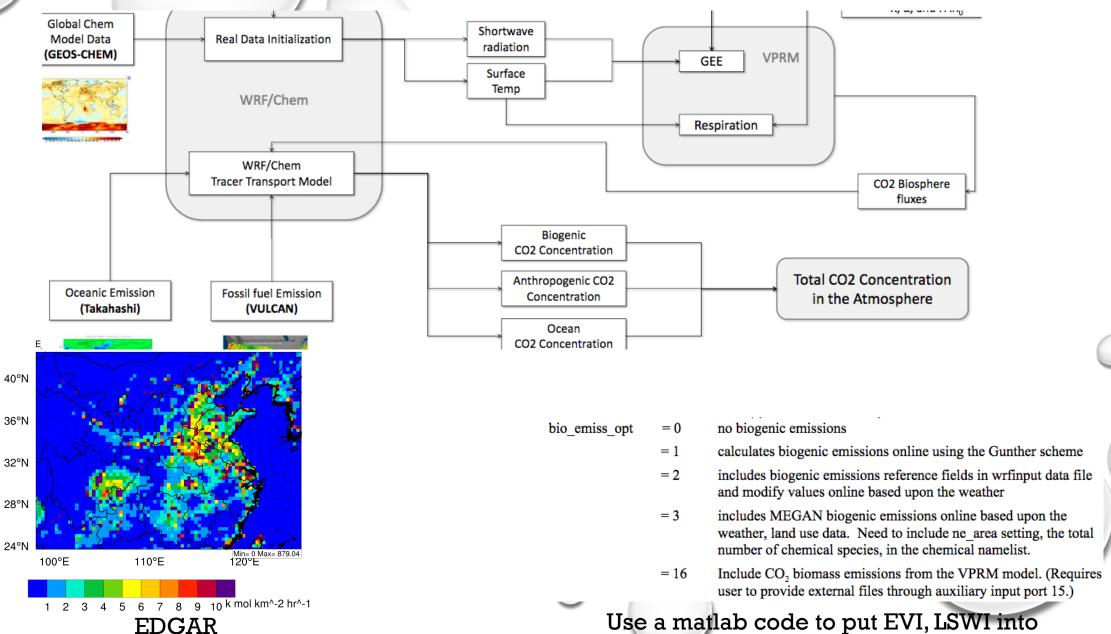
Xiaoming Hu June 13, 2017 @HuNan

WRF/CHEM FOR AIR QUALITY SIMULATIONS


Chemical IC and BC: MOZART4 outputs

⋊Gas reactions: RACM




WRF/CHEM-VPRM FOR CO2 SIMULATION

Vegetation Photosynthesis and Respiration Model (VPRM) (Xiao et al., 2004)

Xiao, X. M., D. Hollinger, J. Aber, M. Goltz, E. A. Davidson, Q. Y. Zhang, and B. Moore, 2004: Satellite-based modeling of gross primary production in an evergreen needleleaf forest. *Remote Sens Environ*, **89**, 519-534, 10.1016/j.rse.2003.11.008.

Just like we provide NEI for air quality simulation Note: only 1 layer, need PREP_CHEM_SRC program Use a matlab code to put EVI, LSWI into auxinput16.

Software requirements

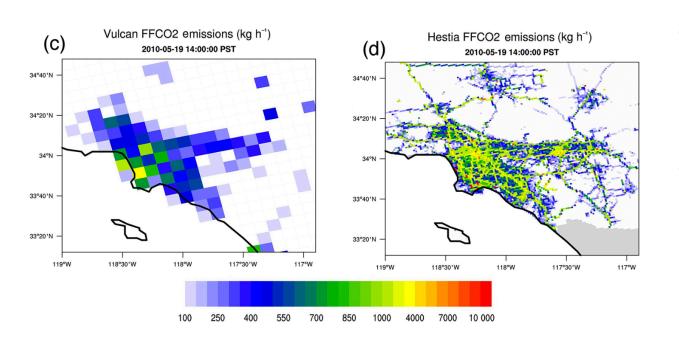
- GNU Linux/Unix OS
 - tested on x86_64 Suse Linux
- · GNU Bash
 - tested with version 2.05b.0(1)
- HDF5 tools
 - tested with version 1.6.4
 - obtained from: http://www.hdfgroup.org/HDF5/
- H4toH5 conversion tool
 - tested with version 1.2
 - obtained from: http://www.hdfgroup.org/h4toh5/
- MODIS Land Data Operational Product Evaluation (LDOPE) tool
 - tested with version: 1.0
 - obtained from: http://gcmd.nasa.gov/records/LDOPE.html
- MODIS Reprojection Tool (MRT)
 - tested with version: 3.3
 - optained from https://lpdaac.usgs.gov/lpdaac/tools/modis reprojection tool
- NETCDF library and tools
 - tested with version: 3.6.0-p1
 - optained from: http://www.unidata.ucar.edu/software/netcdf/
- R
- tested with version: 2.5.1
- optained from: http://cran.r-project.org/
- · Rmap package for R
 - · tested with version: 1.1.0
 - obtained from: http://www.maths.lancs.ac.uk/Software/Rmap/
- HDF package for R (hdf5)
 - tested with version 1.6.2
 - · obtained from: http://cran.r-project.org/
- NETCDF package for R (RNetCDF)
 - tested with version 1.2-1
 - obtained from: http://cran.r-project.org/

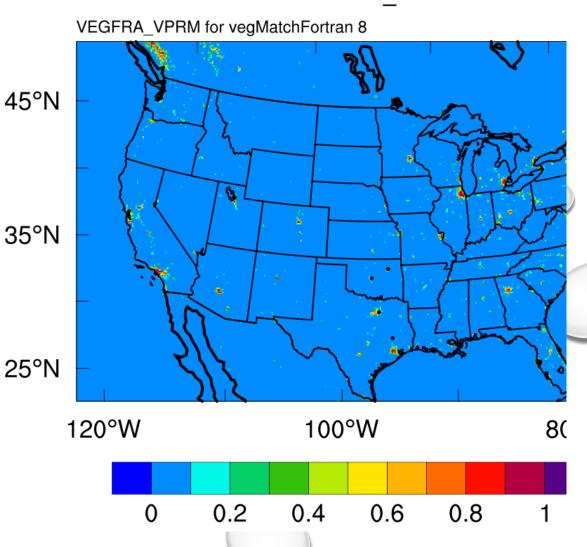
Biogeosciences, 6, 807–817, 2009 www.biogeosciences.net/6/807/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Comparing high resolution WRF-VPRM simulations and two global CO₂ transport models with coastal tower measurements of CO₂

R. Ahmadov¹, C. Gerbig¹, R. Kretschmer¹, S. Körner¹, C. Rödenbeck¹, P. Bousquet², and M. Ramonet²

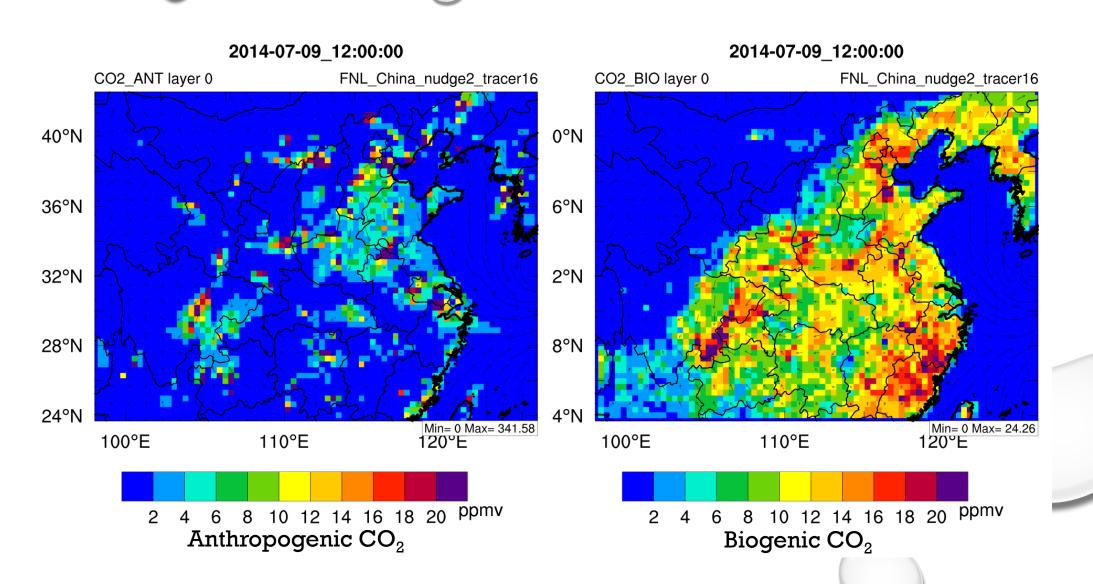
¹Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany

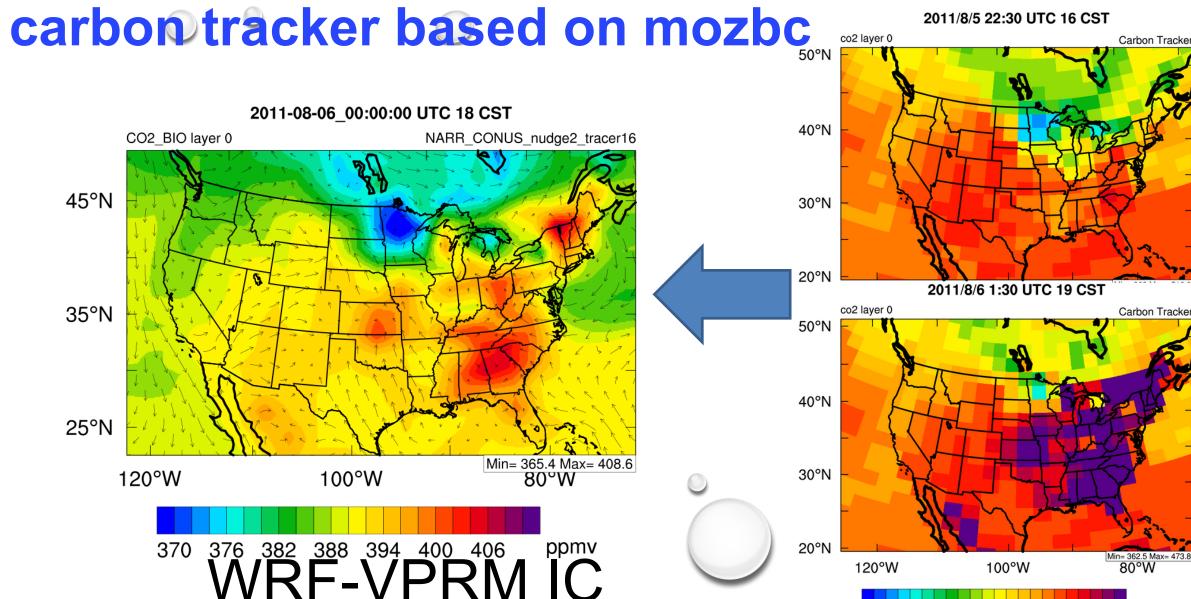

²Laboratoire des Sciences du Climat et de 1-Environnement, UMR CEA-CNRS 1572, 91191 Gif-sur-Yvette, France



Only published WRF-VPRM paper over US: no much CO2_BIO and lots of issues!

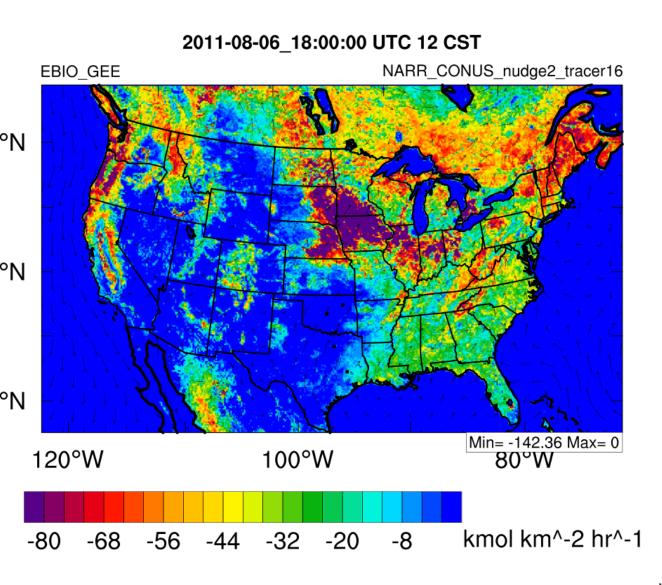
Los Angeles megacity: a high-resolution land-atmessystem for urban CO₂ emissions


Sha Feng^{1,2,a}, Thomas Lauvaux^{3,2}, Sally Newman⁴, Preeti Rao², Ravan Ahmadov^{5,6}, Ai Riley M. Duren², Marc L. Fischer⁷, Christoph Gerbig⁸, Kevin R. Gurney⁹, Jianhua Hu Zhijin Li², Charles E. Miller², Darragh O'Keeffe⁹, Risa Patarasuk⁹, Stanley P. Sander² Kam W. Wong^{4,2}, and Yuk L. Yung⁴

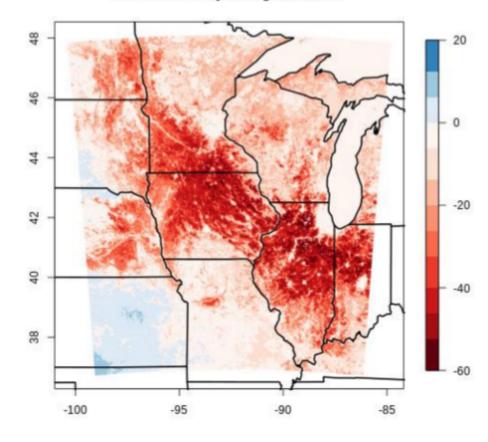


First test results over China Domain:

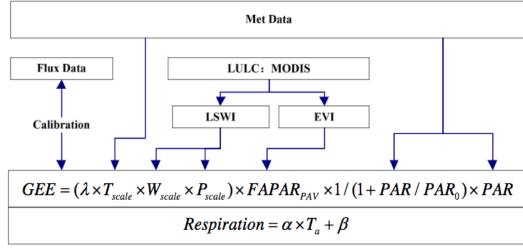
http://www.caps.ou.edu/micronet/CO2_and_otherGHG.html



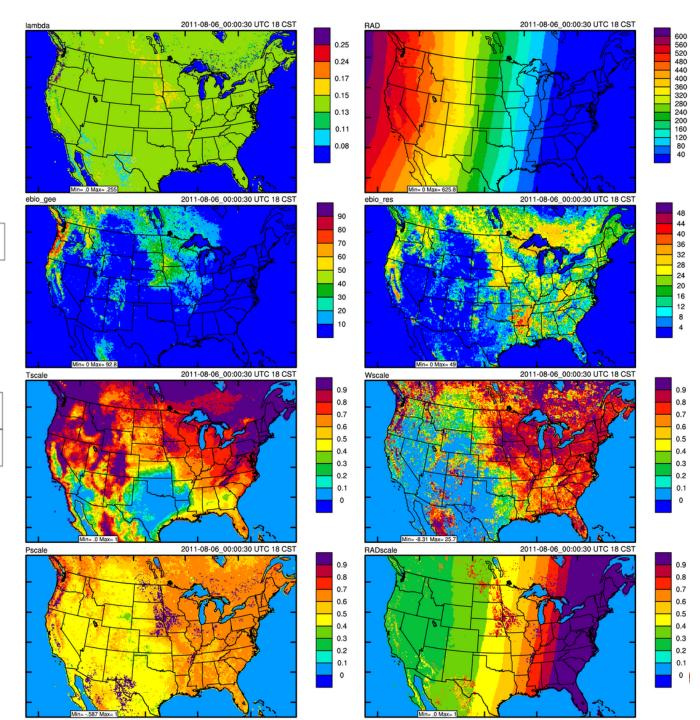
Code developed to extract IC/BC from


364 370 376 382 388 394 400 ppmv

Compare with Jamroensan (2013) thesis



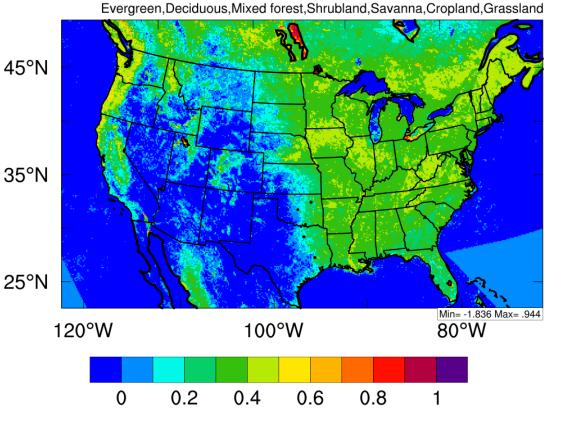
Improving bottom-up and top-down estimates of carbon fluxes in the Midwestern USA



Current issues for application over US

4 parameters, 4 scalars/scales

Need to add more limiters make sure the scales are between 0 and 1



Should we improve W_{scale}?

LSWI MAX 2011-08-06 01:00:00

no much CO2 diurnal variation over southern GP and western US, reasonable?

 α =0.0269 Grassland, over southern GP GEE also 0 since LSWI MAX < 0

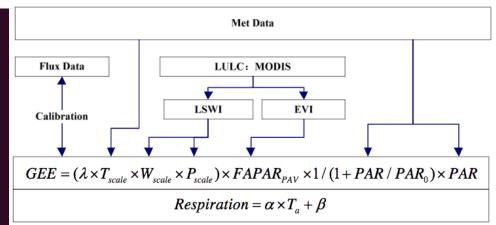
for drought conditions

For drought periods, we suggested a modified W_{scalar} estimation approach as follows:

$$W_{scalar} = long-term LSWI_{max} + LSWI$$
. Wagle, Xiao et al. (2014)

$$W_{\text{scale}}(\text{grassland/savanna}) = \frac{(\text{LSWI} - \text{LSWI}_{\min})}{(\text{LSWI}_{\max} - \text{LSWI}_{\min})}$$

For veg 4 & 7 (Shrubland and grassland)


$$W_{\text{scale}}(\text{other vegetation types}) = \frac{(1 + \text{LSWI})}{(1 + \text{LSWI}_{\text{max}})}$$

Matross et al. (2006, Tellus)

Tair= T2(i,j)veg_frac_loop: D0 m=1, if (vprm_in(i,m,j,p_vegfra_vprm)<1.e-8) CYCLE ! Then fluxes are zero a1= Tair-Tmin(m) a2= Tair-Tmax(m) a3= Tair-Topt(m) if (a1<0. .OR. a2>0.) then Tscale= 0. Tscale=a1*a2/(a1*a2 - a3**2) if (Tscale<0.) then Tscale=0. if (m==4 .OR. m==7) then ! grassland and shrubland are xeric systems if (vprm_in(i,m,j,p_lswi_max)<1e-7) then ! in order to avoid NaN for Wscale Wscale= 0. Wscale= (vprm_in(i,m,j,p_lswi)-vprm_in(i,m,j,p_lswi_min))/(vprm_in(i,m,j,p_lswi_max)-vprm_in(i,m,j,p_lswi_min)) Wscale= (1.+vprm_in(i,m,j,p_lswi))/(1.+vprm_in(i,m,j,p_lswi_max)) if (m==1) then ! evegreen Pscale= 1. else if (m==5 .OR. m==7) then ! savanna or grassland Pscale= (1.+vprm_in(i,m,j,p_lswi))/2. evithresh= vprm_in(i,m,j,p_evi_min) + 0.55*(vprm_in(i,m,j,p_evi_max) vprm_in(i,m,j,p_evi_min)) if (vprm_in(i,m,j,p_evi)>=evithresh) then ! Full canopy period Pscale= 1. Pscale=(1.+vprm_in(i,m,j,p_lswi))/2. ! bad-burst to full canopy period RADscale= 1./(1. + RAD(i.j)/rad0(m))GEE_frac= lambda(m)*Tscale*Pscale*Wscale*RADscale* vprm_in(i,m,j,p_evi)* RAD(i,j)*vprm_in(i,m,j,p_vegfra_vprm) + GEE_frac RESP_frac= (alpha(m)*Tair + RESPO(m))*vprm_in(i,m,j,p_vegfra_vprm) + RESP_frac

```
DATA vprm_table_us &
DATA vprm_table_europe 8
! Tropics are still preliminary, too strong SWDOWN might cause too high uptake
DATA vprm_table_tropics &
TYPE (grid_config_rec_type) , INTENT (IN) :: config_flags
sel pars: SELECT CASE(config_flags%vprm_opt)
 vprm_par=vprm_table_us
 vprm_par=vprm_table_europe
 vprm_par=vprm_table_tropics
CASE DEFAULT
 CALL wrf_message('
 CALL wrf_error_fatal (
END SELECT sel pars
             vprm par(1:8,1)
rad_vprm=
lambda vprm = vprm par(1:8,2)
alpha_vprm=
             vprm_par(1:8,3)
resp_vprm=
             vprm_par(1:8,4)
```


Uncertainties: 4 parameters β =0

Warning: the VPRM parameters may need to be optimized depending on the season, year and region! The parameters provided here should be used for testing purposes only!

Confusing units, issue with λ and PAR₀

[17] The complete expression for GEE in the VPRM is thus given by

GEE =
$$\lambda \times T_{\text{scale}} \times P_{\text{scale}} \times W_{\text{scale}} \times \text{EVI}$$

$$\times \frac{1}{(1 + \text{PAR/PAR}_0)} \times \text{PAR}$$
(9)

Here λ replaces ε_0 , in order to aggregate into one parameter empirical adjustments to P_{scale} , T_{scale} , and W_{scale} ; λ and PAR_0 are the only adjustable parameters for description of the light-dependent part of NEE, with values derived below from tower flux data.

[18] PAR is measured at all flux tower sites, but not across the continent. At large scales the VPRM will be driven using shortwave (SW) radiation, available for almost all of North America from Geostationary Operational Environmental Satellite (GOES) data [e.g., Diak et al., 2004] and from assimilated meteorological products. SW is very closely correlated with PAR; SW $\approx 0.505 \times PAR$ (units: SW, Watts/m²; PAR, μ mole m⁻² s⁻¹).

Mahadevan et al. (2008, GBC)

PAR (µmol m⁻² s⁻¹) is acutally SWDOWN (W m⁻²) in the model

 λ : μ mole CO₂ m⁻² s⁻¹/ μ mole PAR m⁻² s⁻¹ Does it mean

 λ : μ mole CO₂ m⁻² s⁻¹/Watts m⁻²

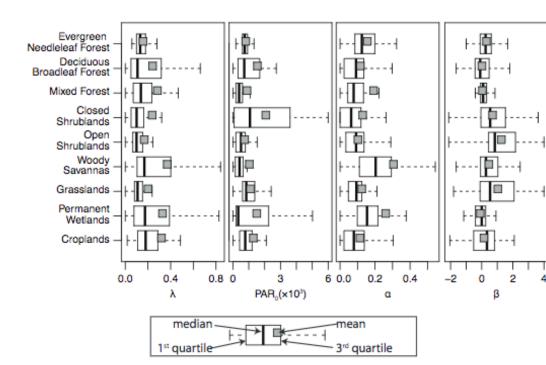
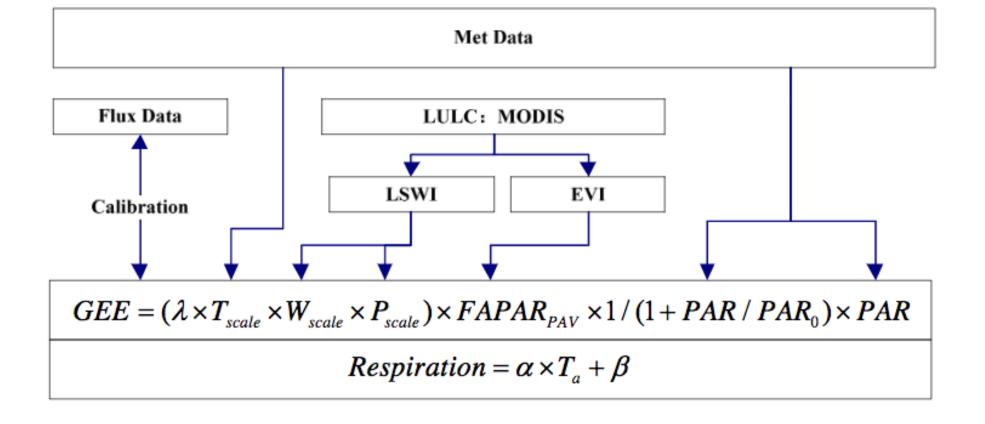

Can we believe Table 2 and compare with other studies?

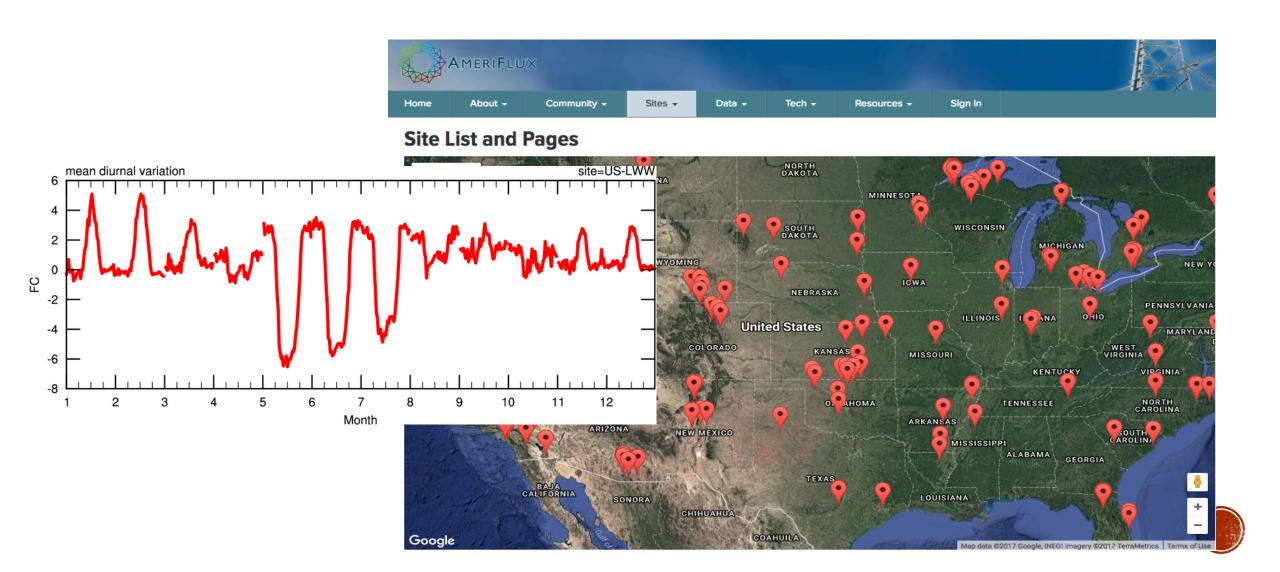
Table 2. Parameters PAR₀, λ, α, β, and Their Variances and Light Use Efficiency at Calibration Sites^a
Hilton et al.: Spatial structure in land surface model residuals

						_	-			
Site	T_{min}	Topt	T_{max}	T_{low}	PAR_0	λ	α	β	σ -PAR $_0$	
HARVARD	0	20	40	5	570	0.127	0.271	0.25	14	
HOWLAND	0	20	40	2	629	0.123	0.244	24	17	
NOBS	0	20	40	1	262	0.234	0.244	0.14	5	
NIWOT	0	20	40	1	446	0.128	0.250	0.17	13	
METOLIUS	0	20	40	2	1206	0.097	0.295	43	39	
SOY MEADS2	5	22	40	2	2051	0.064	0.209	0.20	137	
CORN MEAD	5	22	40	2	11250	0.075	0.173	0.82	1746	
TONZI	2	20	40	-	3241	0.057	0.012	0.58	293	
VAIRA	2	18	40	-	542	0.213	0.028	0.72	23	
DONALDSON	0	20	40	1	790	0.114	0.153	1.56	18	
LUCKY-HILLS	2	20	40	-	321	0.122	0.028	0.48	14	
PEATLAND	0	20	40	3	558	0.051	0.081	0.24	23	


^aUnits are as follows: PAR₀: μ mole m⁻² s⁻¹; λ : μ mole CO₂ m⁻² s⁻¹/ μ mole PAR m⁻² s⁻¹; α : μ mole CO₂ m⁻² s⁻¹/⁰C use efficiency: λ .

Wagle et al. (2014): The largest observed ε_0 value was 0.062 ± 0.0066 (standard error) mol CO_2 mol⁻¹ PPFD at the Fermi site during the week June 24–30, 2007. As a result of drought, smaller ε_0 values were observed at the El Reno sites. The highest observed ε_0 values were 0.035 ± 0.0018 mol CO_2 mol⁻¹ PPFD (July 8–15, 2005) at the El Reno control site

Fig. 3. Box-and-whisker plots for values of VPRM parameters, estimated monthly by plant functional type (PFT). Whiskers show 1.5 times the interquartile range. Units for parameters are as follows: λ : μ mol CO₂ m⁻² s⁻¹/ μ mol PAR m⁻² s⁻¹; α : μ mol CO₂ m⁻² s⁻¹°C⁻¹; β : μ mol CO₂ m⁻² s⁻¹; PAR₀: μ mol PAR m⁻² s⁻¹.



Fraction of Photosynthetically Active Radiation absorbed by the photosynthetically active portion of the vegetation FAPAR=EVI

Should we try **FAPAR=1.25*(EVI-0.1)**?

Compare with Ameriflux or ACT-America?

