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Abstract 28

Many studies have investigated urban heat island (UHI) intensity for cities around the 29

world, which is normally quantified as temperature difference between urban location(s) and 30

rural location(s).  A few open questions still remain regarding UHI, such as the spatial 31

distribution of UHI intensity, temporal (including diurnal and seasonal) variation of UHI 32

intensity, and the UHI formation mechanism.  A dense network of atmospheric monitoring sites, 33

known as the Oklahoma City (OKC) Micronet (OKCNET), was deployed in 2008 across the 34

OKC metropolitan area.  This study analyzes data from OKCNET in 2009 and 2010 to 35

investigate OKC UHI at a sub-city spatial scale for the first time.  The UHI intensity exhibited 36

large spatial variations over OKC.  During both daytime and nighttime, the strongest UHI 37

intensity is mostly confined around the central business district (CBD) where land surface 38

roughness is the highest in the OKC metropolitan area.  These results do not support the 39

roughness warming theory to explain the air temperature UHI in OKC.  The UHI intensity of 40

OKC increased prominently around the early evening transition (EET) and stayed at a fairly 41

constant level throughout the night.  The physical processes during the EET play a critical role in 42

determining the nocturnal UHI intensity.  The near-surface rural temperature inversion strength 43

was a good indicator for nocturnal UHI intensity.  As a consequence of the relatively weak near-44

surface rural inversion, the strongest nocturnal UHI in OKC was less likely to occur in summer.  45

Other meteorological factors (e.g., wind speed, cloud) can affect the stability/depth of nighttime 46

boundary layer, and can thus modulate nocturnal UHI intensity. 47

Keywords: urban heat island, urban observation network, micrometeorology   48
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1. Introduction 49

Due to the different properties of urban surface, temperatures over urban areas are 50

typically higher than over the surrounding rural areas, a phenomenon well known as the urban 51

heat island (UHI; Oke 1976, 1981, 1982; Arnfield 2003).  During the past few decades, many 52

studies have been conducted to observe and document UHI magnitude/intensity in cities around 53

the world.  UHI intensity is often quantified as the difference in temperature of near-surface air 54

or land surface between urban site(s) and surrounding rural site(s).  Most of these previous 55

studies were limited to discuss pairs of urban-rural differences, either difference between one 56

urban and one rural site or between urban mean and rural mean temperature (e.g., Gedzelman et 57

al. 2003; Wienert and Kuttler 2005; Yow and Carbone 2006; Alonso et al. 2007; Basara et al. 58

2008; Miao et al. 2009; Steeneveld et al. 2011; Husain et al. 2014; Hu and Xue 2015).   59

Compared to its temporal characteristics, the spatial characteristics of UHI intensity 60

(UHII) are much less investigated, largely due to difficulties and costs of deploying multiple 61

instruments with enough density across the urban area (Basara et al. 2010; Chapman et al. 2015).  62

Because the in-situ weather stations in urban areas are usually sparse (Kim and Baik 2005; Stone 63

2007; Tan et al. 2010; Basara et al. 2011; Muller et al. 2013; Fenner et al. 2014), UHII at the 64

spatial scale of a city is sometimes derived from remotely sensed land-surface temperatures 65

(Voogt and Oke 2003; Fung et al. 2009; Nichol et al. 2009; Zhou and Shepherd 2010; Peng et al. 66

2012; Winguth and Kelp 2013).  However, there are inherent issues associated with remotely 67

sensed UHII.  Satellite-derived land-surface temperature only account for the radiant 68

temperatures of surfaces seen by the radiometer and the data correspond to averages across the 69

area of a pixel (Roth et al. 1989).  As a consequence, roofs, treetops, and open horizontal areas 70

are oversampled and vertical surfaces and areas below tree crowns are neglected in remotely 71
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sensed UHII.  The physical properties, and radiative and turbulent environments of facets that are 72

well represented by remote-sensing data often differ from those that are undersampled (Arnfield 73

2003).  Thus, the remote sensing poorly sample the true surface temperature within the city.  As 74

a result, remotely-sensed land-surface temperature UHII and in-situ measured air temperature 75

UHII can have very distinctly different behaviors, such as, different diurnal variation (Cui and de 76

Foy 2012). While air temperature UHII is reported to be stronger at night than in the day in many 77

studies (Arnfield 2003; Souch and Grimmond 2006), remotely-sensed land-surface UHI shows 78

stronger intensity during daytime than during nighttime (Roth et al. 1989; Imhoff et al. 2010; 79

Schwarz et al. 2011; Jin 2012; Klok et al. 2012; Peng et al. 2012; Zhao et al. 2014).  Thus, 80

further investigation of spatial and temporal characteristics of UHII using consistent, quality 81

observations of air temperature is required to improve the understanding of the impacts of 82

urbanization (Bottyan and Unger 2003; Grimmond 2006; Huang et al. 2008; Basara et al. 2010; 83

Grimmond et al. 2010; Chen et al. 2012; Muller et al. 2013; Schatz and Kucharik 2014; Dou et 84

al. 2015).  The information regarding spatial distribution of air temperature UHI of a city can 85

also help provide heat information at a neighborhood scale for use in future detailed public 86

health analyses and heat hazard mitigation strategies (Heusinkveld et al. 2014; Chapman et al. 87

2015; Debbage and Shepherd 2015). 88

Several studies have shown that  UHII is dictated by the intrinsic characteristics of a city 89

(Oke 1981, 1982; Unger 2004; Grimmond 2007; Hart and Sailor 2009; Georgakis et al. 2010; 90

Ryu and Baik 2012; Adachi et al. 2014; Barlow 2014) and modulated by external meteorological 91

factors (Morris and Simmonds 2000; Hu et al. 2013c). Oke et al. (1991) used a simple energy 92

balance model to assess the relative importance of the commonly stated intrinsic causes of UHI 93

under calm and cloudless conditions, including anthropogenic heat, thermal properties/moisture 94
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availability of the materials of the city, street canyon geometry, and urban greenhouse gases. The 95

first three of these were identified as the main intrinsic causative factors contributing to the UHII 96

in a modeling study conducted by Ryu and Baik (2012).  A quantitative attribution of various 97

contributions to UHII is estimated in Zhao et al. (2014) using a surface energy-balance analysis. 98

Low efficiency at dissipating heat from urban surfaces due to larger aerodynamic resistance is 99

diagnosed to be the dominant contributor to daytime UHII in cities in the humid southeast and 100

south-central United States (including Oklahoma), which coincides roughly with the Koppen-101

Geiger temperate climate zone.  Improved understanding of causative factors contributing to the 102

UHII is still needed for UHI mitigation management (Hidalgo et al. 2010; Loughner et al. 2012; 103

Clinton and Gong 2013; Li et al. 2013; Theeuwes et al. 2013; Li et al. 2014; Zhao et al. 2014). 104

Conflicting results have been reported for the seasonal variation of UHII (Arnfield 2003; 105

Yang et al. 2013).  Using the air temperature defined UHI, some previous studies (e.g., Magee et 106

al. 1999; Steinecke 1999; Montavez et al. 2000; Jonsson 2004; Kim and Baik 2005; Hinkel and 107

Nelson 2007; Zhou and Shepherd 2010; Memon et al. 2011; Yang et al. 2013) reported that UHIs 108

are the weakest in summer and strongest in winter; while other studies found that UHIs are best 109

developed in summer or warm half of the year (Karl et al. 1988; Schmidlin 1989; Klysik and 110

Fortuniak 1999; Philandras et al. 1999; Morris et al. 2001; Fortuniak et al. 2006; Camilloni and 111

Barrucand 2012; Fenner et al. 2014; Schatz and Kucharik 2014; van Hove et al. 2015).  Most 112

studies based on analysis of satellite-derived land-surface temperature reported that UHII over 113

many cities was significantly higher in summer than in winter, e.g., Imhoff et al. (2010) and 114

Peng et al. (2012) for cities of the United States, Wang et al. (2007a) and Zhang et al. (2005) for 115

Beijing, Li et al. (2012) for Shanghai, Meng and Liu (2013) for Jinan, Zhang et al. (2010) for 116

other cities.  Factors governing the seasonal variation of UHII need further investigation. 117
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Oklahoma City (OKC), Oklahoma (35.468 762°N, 97.516 304°W), spans ~1610 km2.  It 118

is one of the 10 largest cities by land area in the United States.  The terrain of OKC is quite flat.  119

The temporal variation of UHII in OKC has been investigated in observational studies (Basara et 120

al. 2008; Basara et al. 2010; Klein 2012) for a few short-term periods (mostly for July 2003). 121

Studies with research and weather prediction models further focused on evaluating the skill of 122

these models in predicting UHII with urban canopy-layer parameterization schemes of different 123

level of complexity (Liu et al. 2006; Lemonsu et al. 2009; Hu et al. 2013c; Husain et al. 2013).  124

During 2007 and 2008, a dense network of atmospheric monitoring sites (i.e., the OKC Micronet 125

or OKCNET) was deployed across the OKC metropolitan area (Basara et al. 2011), which 126

provided data for  long-term monitoring of UHII in OKC at the spatial scale of the city.  Thus, 127

given the dense meteorological observations across the OKC metropolitan area, the objectives of 128

this study are to (1) illustrate the spatial pattern of UHII in the OKC metropolitan area, (2) 129

investigate the diurnal and seasonal variations of UHII in OKC, and (3) diagnose how UHI 130

formation is related to land-surface and boundary-layer processes.  Since previous studies have 131

shown that UHII is closely related to wind speed (Fast et al. 2005; Hu et al. 2013c), some of its 132

spatiotemporal characteristics are also discussed. 133

 134

2. Data and methods 135

Our analysis focuses on the OKC metropolitan area (Fig. 1).  Embedded within the OKC 136

urbanized area is a well-defined central business district (CBD) that spans ~20 km2, with the 137

average building height being around 50–70 m and the tallest building being 152 m high (during 138

the years studied).  This study utilized surface meteorological data collected at the stations 139



7 
 

around the OKC metropolitan area from two networks, i.e., the OKC Micronet (OKCNET) and 140

the Oklahoma Mesonet (site locations in Fig. 1) (Brock et al. 1995; McPherson et al. 2007). 141

The OKCNET is an operational network designed to improve atmospheric monitoring 142

across the OKC metropolitan area, which was officially commissioned in November 2008 143

(Basara et al. 2011).  OKCNET consists of a total of 39 stations with an average spacing of 144

approximately 3 km, including 36 stations mounted on traffic signals at a height of ~9 m above 145

ground level (AGL) and 3 stations in OKC (i.e., OKCN, OKCW, and OKCE) deployed 146

following the protocols of the Oklahoma Mesonet.  Basara et al. (2010, 2011) provided detailed 147

information about the siting of the OKCNET sites and their classification using different criteria 148

proposed in the literature.  Basara et al. (2010) used a simplified classification for a composite 149

analysis of UHI in OKC for a heat wave episode, in which OKCNET sites are grouped into three 150

categories (i.e., urban, suburban, and rural) based on the surrounding land cover characteristics.  151

A more detailed climate-based classification of urban sites, i.e., seven urban climate zones 152

(UCZs), was proposed by Oke (2004).  The urban OKCNET stations fall into UCZ 153

classifications of UCZ1 and UCZ2 (intensely developed urban); the suburban OKCNET stations 154

fall into UCZ classifications of UCZ4 through UCZ7 (highly developed, medium, or low density 155

urban, suburban to semi-rural);  the rural OKCNET stations fall into UCZ classifications of 156

UCZ7 (semi-rural) (Basara et al. 2010; Basara et al. 2011).   157

The Oklahoma Mesonet is a rural network of 120 meteorological stations with minimal 158

influences from urban landscapes (McPherson et al. 2007; Basara et al. 2008).  Each of the 159

Mesonet stations is located within a fenced 100 m2 plot of land and measures more than 20 160

environmental variables, including wind at 2 and 10 m, air temperature at 1.5 and 9 m AGL, and 161

short wave radiation, that are used in the analysis of this study.  The average temperature at 9 m 162



8 
 

AGL at the seven Mesonet sites surrounding the OKC metropolitan area (i.e., El Reno (ELRE), 163

Guthrie (GUTH), Kingfisher (KIN2), Minco (MINC), Norman (NRMN), Washington (WASH), 164

and Spencer (SPEN); see Fig. 1) are calculated as background rural temperature following the 165

approach of Basara et al. (2008) and Klein (2012).  The UHI intensity at each OKCNET site is 166

defined as the difference between the temperature at the OKCNET site and the background rural 167

temperature.  Note that the average elevation difference between the OKCNET sites (≈370 m 168

above sea level) and the seven rural Mesonet sites (≈363 m above sea level) is approximately 7 169

m.  Using mean temperature at the seven Mesonet sites as background rural temperature provides 170

a more robust measure of UHI intensity and minimizes the inherent variability between rural 171

sites that can impact the magnitude of UHI values (Hawkins et al. 2004; Sakakibara and Owa 172

2005; Hunt et al. 2007; Lee and Baik 2010; Mohsin and Gough 2012). For example, as a result 173

of the urbanization in recent years, the NRMN station was at the edge of an urban area according 174

to the U.S. Geological Survey (USGS) 2006 National Land Cover Data (NLCD; Fig. 1), where 175

the measured rural temperature may be biased high. On the other hand, the ELRE site to the west 176

of the metropolitan area is known to experience more rapid nighttime cooling than other nearby 177

Mesonet sites and often has a low bias (Hunt et al. 2007).  178

Richardson number (𝑅𝑖), an indicator of dynamic stability of an air layer, considers 179

effects of both wind shear and buoyancy on the atmospheric stability.  To investigate the diurnal 180

cycle of near-surface atmospheric stability and its impact on UHI development, the 𝑅𝑖  at 181

Mesonet sites around OKC was estimated using (Bodine et al. 2009) 182

𝑅𝑖 =
𝑔[(𝑇9𝑚− 𝑇1.5𝑚)/∆𝑧𝑇 +Γ𝑑]∆𝑧𝑢2

𝑇1.5𝑚[𝑢10𝑚− 𝑢2𝑚]2  ,        (1) 183
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where g is the acceleration due to gravity, Γ𝑑 = 0.01°C m−1   is the dry adiabatic lapse rate, 184

𝑇9𝑚 and 𝑇1.5𝑚 are the air temperatures measured at 9 and 1.5 m AGL, and  𝑢2𝑚 and 𝑢10𝑚 are 185

wind speed at 2 and 10 m AGL, respectively. The height differences between the measurement 186

levels are ∆𝑧𝑇 = 7.5 m for air temperature and ∆𝑧𝑢 = 8.0 m for wind speed. 187

One of the surrounding Mesonet sites, KIN2, was deployed in March 2009. A few 188

OKCNET sites were decommissioned in November 2010, i.e., reliable temperature data over the 189

urban area were no longer available from thereon.  Thus the investigation of urban effects 190

focuses on the period of April 2009 - October 2010 in this study.  Precipitation has been reported 191

to reduce the difference in the heating/cooling rate between the urban and rural areas, thus 192

suppressing UHI development (Chow and Roth 2006; Lee and Baik 2010).  Time periods with 193

precipitation at any OKCNET sites or the seven surrounding Mesonet sites were not considered 194

in this study to avoid the impact of precipitation on UHI.  Since the spatial distribution of UHII 195

is to be examined, all the sites need to have the same measurement period.  So only the time 196

periods when data from all the sites were available between April 2009 and October 2010 (total 197

6937 hours) were considered when investigating urban-rural differences.  On the other hand, the 198

Oklahoma Mesonet has been continuously operational.  The temperature inversion between 1.5 199

and 9 m AGL at the seven Mesonet sites surrounding OKC were examined for a longer period 200

(i.e., April 2009-December 2012) to diagnose possible seasonal variations of UHI intensity. 201

In addition to values at spatially distributed observation sites, spatial patterns of UHII and 202

wind speed were analyzed using the Kriging interpolation method.  The Kriging method is 203

popular in mapping meteorological and chemical variables based on station observation data in 204

diverse applications (e.g., Chen et al. 2014; Smoliak et al. 2015; Zou et al. 2015).  The Kriging 205
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function embedded in the Interactive Data Language (IDL, Version 8.4) was used in this study as 206

in Chen et al. (2014). 207

3. Results 208

3.1 Mean spatial distributions and diurnal variations of UHI and wind speed 209

3.1.1 UHI intensity and relationship with spatial distributions of wind speed 210

The spatial distributions of UHII and wind speed are overlaid on top of land use 211

categories in Fig. 2.  The strongest UHI intensity was mostly confined around the central 212

business district (CBD) during both daytime and nighttime except for a hotspot of KNW103 213

during nighttime (Fig. 2b).  The spatial maps of UHI intensity produced by the Kriging method 214

illustrate elongated heat plumes north of the CBD during both daytime and nighttime (Fig. 3a, b), 215

which can be explained by downwind transport of heat by the predominant southerly winds.   216

While urban effects on temperature are quite widely discussed in the literature, less 217

information is available about urban effects on wind patterns (Klein 2012; Klein and Galvez 218

2014).  Spatial patterns of mean wind speed around OKC were examined using the OKCNET 219

observations (Fig. 2c,d).  The corresponding analysis based on the Kriging method are also 220

shown in Fig. 3c,d.  Unlike the elongated feature of UHI intensity, wind speeds showed a more 221

concentric pattern around the CBD.  Wind speed was slowest during both daytime and nighttime 222

around the CBD, where the UHI intensity was the strongest.  Having the largest wind speed 223

reduction centered around the CBD suggests a strong impact of surface roughness which is 224

largest in this area.  Roughness also affects the aerodynamic resistance of sensible heat transfer. 225

Larger/smaller roughness leads to stronger/weaker vertical mixing and more/less efficiency to 226

transfer sensible heat from the land surface to the atmospheric boundary layer (ABL) (Lee et al. 227

2011).   228
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In the humid southeast and south central United States (including Oklahoma), the rural 229

land is densely vegetated, owing to ample precipitation, and is aerodynamically rough.  Zhao et 230

al. (2014) argue that in this humid region, sensible heat transfer from the surface to the ABL is 231

more efficient in rural than in urban areas, leading to relatively lower/higher surface 232

temperatures in rural/urban area. Such a process is attributed in Zhao et al. (2014) to largely 233

explain MODIS-derived daytime land surface UHII in this region, which is termed as the 234

roughness warming theory.  The roughness warming theory was derived when comparing the 235

aerodynamic resistance/roughness between rural land-use categories and a single urban category 236

(i.e., the intra-urban variation of roughness is ignored).  Given the intra-urban variation of 237

roughness due to different building densities and heights, according to the roughness warming 238

theory aerodynamically smoother urban areas should experience stronger daytime UHII than 239

aerodynamically rougher urban areas (e.g., CBD), assuming that the ratio of roughness length of 240

momentum to heat remains roughly constant across the entire urban area (Moriwaki and Kanda 241

2006; Kato et al. 2008; Sugawara and Narita 2009; De Ridder et al. 2012).  However, this is not 242

the case for OKC.  On the contrary, the aerodynamically roughest CBD area experienced the 243

highest UHII (Figs. 2a,b, 3a,b).  Thus, the roughness warming theory of Zhao et al. (2014) used 244

for explaining the land surface UHI may not explain the air temperature UHI observed in this 245

study.  Other intrinsic causative factors, e.g., thermal properties of urban surfaces (Grimmond 246

and Oke 1999; Ogoli 2003; Liu et al. 2006; Zhu et al. 2009; Bohnenstengel et al. 2011; Yang et 247

al. 2013), anthropogenic heat (Ichinose et al. 1999; Fan and Sailor 2005; Grossman-Clarke et al. 248

2005; Schlunzen et al. 2010), reduction in evaporative cooling due to impervious surfaces (Taha 249

1997), and trapping of longwave radiation by urban buildings (Arnfield 2003), must have played 250
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more important roles in contributing to the air temperature UHII in OKC, as suggested in a 251

modeling study conducted by Ryu and Baik (2012).  252

Detailed diurnal variation of UHI is still subject to debate (Memon et al. 2009; Imhoff et 253

al. 2010; Hu et al. 2013c; Zhao et al. 2014).  A better understanding of UHIIs’ temporal variation 254

could help to diagnose its causative factors (Hu et al. 2013c).  Mean diurnal variation of UHII 255

between April 2009 and October 2010 at OKCNET sites was calculated after removing the 256

periods when precipitation occurred or data from certain sites were missing.  All the sites show a 257

prominent diurnal variation of UHII with higher values during nighttime (Fig. 4a,b).  The UHII 258

normally increased rapidly around the early evening transition (EET), i.e., 7-8 PM (1900-2000 259

LST), and then stayed at a roughly constant level throughout the night until early next morning 260

when the convective boundary layer developed.  Note that since the sunset and sunrise time 261

varies, the transition time in the diurnal variation of UHII are different in different seasons. Such 262

an issue will be discussed in section 3.2.  The characteristics of diurnal variation of UHII shown 263

in Fig. 4a are consistent with existing studies for a few other cities, such as Bucharest (Tumanov 264

et al. 1999), Paris (Lemonsu and Masson 2002), New York City (Gedzelman et al. 2003), 265

Orlando (Yow and Carbone 2006), London (Bohnenstengel et al. 2011; Chemel and Sokhi 2012; 266

Barlow et al. 2015), Thessaloniki and Athens (Giannaros and Melas 2012; Giannaros et al. 267

2013).  In all of these studies, UHI intensity was quantified using near surface air temperature.  268

Reversed diurnal variation of UHII (i.e., higher UHII during daytime than nighttime) was 269

reported when it was quantified using remotely-sensed land-surface temperature (Imhoff et al. 270

2010; Peng et al. 2012; Zhao et al. 2014).  As discussed in the introduction, remotely sensed 271

land-surface temperatures and UHIIs must be carefully interpreted and do not necessarily 272

characterize well urban temperatures.  Another advantage of quantifying UHII using near-surface 273
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air temperature is that ambient air temperature is directly related to public health (Basara et al. 274

2010; Tan et al. 2010; Oswald et al. 2012).  Future studies to further investigate the two different 275

quantifications of UHII (i.e., using air temperature and land surface temperature) and combine 276

their advantages are greatly needed (Schwarz et al. 2012). 277

The rapid increase of UHII around the EET is likely related to rapid changes of mean 278

flow and turbulence in the ABL.  Around sunset, with the rapid decline of solar radiation and 279

sustained radiational cooling of the surface, upward sensible heat fluxes decreased and 280

convective eddies subsided quickly.  Consequently, near-surface atmospheric stability increased 281

quickly as indicated by the rapid increase of mean 𝑅𝑖 at the Mesonet sites around OKC (Fig. 5).  282

At 7 PM (1900 LST), the mean 𝑅𝑖 became larger than 0.2, which is considered a quite stable 283

condition (Banta et al. 2003; Galperin et al. 2007).  Turbulent kinetic energy (TKE) in the upper 284

part of the ABL decays quickly during the EET and this part of the ABL becomes the residual 285

layer, which often becomes decoupled from the newly formed stable layer near the surface 286

(Acevedo and Fitzjarrald 2001; Acevedo et al. 2012; Bonin et al. 2013; Rizza et al. 2013; Klein 287

et al. 2014).  Rapid reduction of near-surface wind speed around 1800 LST (Fig. 6) is an 288

indication of decoupling of the near-surface stable boundary layer from the upper layers with 289

larger horizontal momentum.  Impacts of surface heterogeneities (urban vs. rural) are enhanced 290

in the shallow near-surface stable boundary layer (Godowitch et al. 1987; Acevedo and 291

Fitzjarrald 2001).  Rural near-surface temperature drops quickly in the shallow stable boundary 292

layer due to radiational cooling of the surface.  In contrast, the longwave radiative heat loss at 293

street level in urban areas is reduced due to multiple reflections among urban buildings (Oke 294

1981).  Meanwhile, heat stored in the urban materials during the day begins to release during the 295

EET (Ogoli 2003; Harman and Belcher 2006; Liu et al. 2006; Zhu et al. 2009; Bohnenstengel et 296
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al. 2011; Zajic et al. 2011; Yang et al. 2013).  Together with anthropogenic heat, this extra heat 297

in the urban region is released into and confined in the urban boundary layer (Ichinose et al. 298

1999; Fan and Sailor 2005; Grossman-Clarke et al. 2005; Rizwan et al. 2008; Schlunzen et al. 299

2010; Kotthaus and Grimmond 2014a, 2014b; Barlow et al. 2015).  Consequently, urban near-300

surface temperatures decrease slowly in a more neutral urban boundary layer induced by the 301

stronger turbulent vertical mixing due to higher heat emissions and rougher surface in cities 302

(Clarke 1969; Oke 1987; Uno et al. 1988; Martilli et al. 2002; Nelson et al. 2011; Salamanca et 303

al. 2014; Bohnenstengel et al. 2015).  As a result of different cooling rates at rural and urban 304

sites for 2-3 hours, UHII increased quickly during the EET and stayed at a roughly constant level 305

for the rest of the night (Fig. 4a,b).     306

Previous studies suggested that spatial variability of temperature in rural areas played a 307

very important role in determining the UHII (Hawkins et al. 2004).  A question arises as to how 308

important the EET cooling rate in rural areas is for UHI development (Yow and Carbone 2006).  309

The relationship between rural background temperature change rate during the EET (2 hours 310

before sunset) and that of UHI intensity immediately after the EET (2 hours after sunset) are thus 311

further examined (Fig. 7).  The mean UHI intensity at the OKCNET “urban” sites (i.e., KCB101-312

109, Basara et al., 2010) is chosen for analysis.  Different sunset time during different month is 313

accounted for.  The statistic investigation based on 2009-2010 data demonstrates that the near-314

surface cooling rate in the rural area around OKC during the EET shows a significant correlation 315

with the UHI intensity at early evening with a correlation coefficient of -0.63 (Fig. 7).  The mean 316

UHI intensity at early evening roughly represents the mean nighttime UHI intensity (Fig. 4a).  317

Thus, the near-surface cooling rate in the rural area during the EET is confirmed to play a critical 318



15 
 

role in determining the nocturnal UHI intensity with strong/weak EET cooling rate likely leading 319

to strong/weak nocturnal UHI.      320

Similar to the cooling rate during the EET, the heating rate during the morning transition 321

was also larger in the rural than urban area (Figure not shown), which is consistent with previous 322

studies (Oke 1987).  The average absolute values of temperature change rate during the early 323

evening and morning transition are shown in Fig. 8.  The temperature change rate shows a 324

concentric distribution with the lowest rate located over OKC’s CBD, and increases from urban 325

to rural zones (Fig. 8), indicating the moderating effects of urban to diurnal temperature change.  326

The temperature change rate during the evening and morning transition may provide an alternate 327

way to estimate the magnitude of urban footprints.    328

As discussed above, UHI intensity exhibited a large spatial variation over OKC (Figs. 2, 329

3, 4).  UHI intensity over OKCNET sites varied between 0.4 and 2.1 oC during nighttime, while 330

it varied between -0.2 and 1.0 oC during daytime (Fig. 4a).  The large spatial variation of UHI 331

intensity over OKC may be primarily caused by the different surface structures and cover at each 332

site, as also reported for other cities (e.g., Shahgedanova et al. 1997; Eliasson and Svensson 333

2003; Alcoforado and Andrade 2006; Kolokotroni and Giridharan 2008; Bohnenstengel et al. 334

2011; Brandsma and Wolters 2012; Oswald et al. 2012; Suomi and Kayhko 2012; van Hove et 335

al. 2015).  Classifying all the sites in cities with different surface structure and cover into a single 336

urban category may be inadequate to accurately quantify UHI in terms of its intensity and 337

variation (Stewart 2011; Stewart and Oke 2012).  According to the three-category (i.e., urban, 338

suburban, and rural) classification of Basara et al. (2010), most of the sites starting with KCB 339

(except KCB110) are located in the CBD and their surface type is classified as “urban”.  These 340

“urban” sites experienced higher UHI intensities than most of the remaining OKCNET sites 341
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during both daytime and nighttime (Figs. 2, 3, 4).  Four OKCNET sites (i.e., KSW101, KSW110, 342

KSE102, KNE103) are classified as “rural” surface type in Basara et al. (2010) and these sites 343

experienced lower UHI intensities than most of the other OKCNET sites (Figs. 2, 3, 4).  The 344

large spatial variation of UHI intensity across OKC suggests that determining UHI intensity 345

using the temperature difference between a certain urban site and a certain rural site may lack 346

objective meaning and climatological relevance.  These results thus justify the proposal by a few 347

recent studies (e.g., Basara et al. 2010) of classifying measurement sites into detailed (to certain 348

degrees) urban categories for objective UHI quantification and description.   349

The Basara et al. (2010) 3-category classification is further compared with the more 350

detailed classification of seven different UCZs defined by Oke (2004).  The UHII diurnal 351

variation show a large variability within individual UCZs (Fig 4b), while the 3-category 352

classification better captures the differences in the UHII characteristics among the OKCNET 353

sites. We have thus decided to use the classification into rural, suburban, and urban sites as 354

proposed by Basara (2010) in this study.   355

3.1.2 Wind speed and implications for treatments in numerical models 356

 357

Due to diurnal variation of vertical coupling strength (strong coupling in daytime and 358

weaker coupling at nighttime), the diurnal cycle of surface wind was prominent, exhibiting a 359

maximum/minimum in the daytime/nighttime (Fig. 6).  During the daytime, stronger downward 360

transport of boundary layer momentum led to stronger surface winds compared to nighttime.  361

Wind speeds at each individual site were largely determined by the roughness of each site 362

(Kamal et al. 2015) and wind climatology in its surrounding environment.  Two OKCNET sites 363

on the west side of OKC, KNW104 (suburban) and KSW101 (rural) with relatively low 364

roughness being located on dispersed settlement and grassland (Basara et al. 2011), experienced 365
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strong wind speeds (Figs. 2c,d, 9).  The climatological east-to-west gradient of wind speed in 366

presence of dominant southerly wind in Oklahoma (Song et al. 2005) is another factor to explain 367

the large wind speeds at these sites.  Such an east-to-west gradient of southerly wind speed in 368

Oklahoma was previously noticed in both observation and modelling results (Hu et al. 2013a; Hu 369

et al. 2013c).   370

Urbanization can have two different effects on surface wind: (i) enhanced surface 371

roughness reduces surface wind speeds (Kamal et al. 2015), while (ii) stronger downward 372

momentum transport due to enhanced vertical mixing increases surface  speeds (Wang et al. 373

2007b; Hu et al. 2013c).  Wind speeds at OKCNET sites (except KNW104 and KSW101) were 374

always smaller than at the surrounding rural Mesonet sites (Fig. 9), which suggests that the 375

effects of the enhanced urban surface roughness were dominant. The urban effect on wind in 376

terms of the magnitude of wind speed reduction was more prominent during daytime than during 377

nighttime.  The reductions of near-surface wind speed in the CBD area are  as large as 3.5 m s-1 378

during daytime while the magnitude of wind speed reduction decreases to 2 m s-1 during 379

nighttime (Fig. 9).   380

Figures 2, 3, and 9 imply that the near-surface wind speed in urban areas is typically 381

weaker than over the surrounding rural areas due to the dominant effects of enhanced roughness 382

in urban. However, in three-dimensional simulations with the Weather Research and Forecasting 383

(WRF) model, higher values of near-surface wind speed are at times simulated over urban than 384

over rural areas (e.g., during the early evening transition, see Supplement Fig. A1). These results 385

which are likely unrealistic according the wind speed data observed at the OKCNET sites, 386

suggest that the vertical transport of momentum in mesoscale models may be over-estimated. 387

The advancement of model capability to handle vertical transport of momentum has been slower 388
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compared to the advancement of model capability to handle transport of scalars due to the fact 389

that most previous research efforts in terms of vertical transport had been focused on scalars 390

rather than momentum (Frech and Mahrt 1995; Storm et al. 2009; Hu et al. 2013a; Ngan et al. 391

2013; Draxl et al. 2014; Gutiérrez et al. 2015).  392

3.2 Seasonal variation of UHI 393

Seasonal variation of UHI intensity in OKC during April 2009-October 2010 (Fig. 10a) 394

did not show a clear warm-cold season contrast as reported in other cities (e.g., Magee et al. 395

1999; Steinecke 1999; Montavez et al. 2000; Jonsson 2004; Kim and Baik 2005; Hinkel and 396

Nelson 2007; Zhou and Shepherd 2010; Memon et al. 2011; Yang et al. 2013).  Hu et al. (2013c) 397

concluded that rural temperature inversion strength can serve as an indicator of nocturnal UHI 398

intensity based on the analysis of temperature data in July 2003 and model simulation results.  399

Thus, temperature inversion strength (defined as temperature difference between 1.5 and 9 m 400

AGL) at the seven surrounding Mesonet sites is also examined (Fig. 10b).  The temperature 401

inversion strength had a similar variation as that of UHII and did not show a clear warm-cold 402

season contrast.  Monthly variation of percentiles (median, 25/75%, and 5/95%) of daily mean 403

nocturnal UHII was also similar as those of nocturnal rural inversion strength (Fig. 11), even 404

though the monthly percentiles may not be statistically significant in certain months due to many 405

missing values because of precipitations (See Fig. 10).  The UHII and surrounding rural 406

inversion strength had a significant correlation during nighttime (2200 – 0500 CST) with a 407

correlation coefficient of 0.79 (Fig. 12a).  As discussed above, urban effects including reduced 408

outgoing longwave radiation, extra heat, and stronger roughness lead to a more neutral and 409

relatively thicker urban boundary layer and slower temperature decrease in contrast to rapid 410

temperature decrease in the shallow stable rural boundary layer during the EET.  Stronger rural 411
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temperature inversion is normally associated with a shallower and more stable boundary layer 412

and allows urban effects to manifest more prominently with higher UHI intensity (Hu et al. 413

2013c), effectively explaining the positive correlation between rural inversion strength and UHI 414

intensity.  Two exceptional points (i.e., 29 March  2010 and 29 October  2010) stand out in Fig. 415

12a.  Two reasons were responsible for these exceptions: first, extremely strong inversion (~8 oC 416

between 1.5 and 9 m AGL) occurred at the El Reno (ELRE) Mesonet site on these nights.  417

Similar significant nocturnal inversion at ELRE site in presence of clam winds, low humidity, 418

and clear skies was previously noticed and reported by Hunt et al. (2007); second, nocturnal 419

warming events occurred at the Minco (MINC) Mesonet site.  Various nocturnal warming events 420

may occur at certain rural stations due to a few reasons (White 2009; Nallapareddy et al. 2011; 421

Hu et al. 2013b; Hu and Xue 2015), including cold front passages.  Detailed investigation of the 422

rural nocturnal warming events is beyond the scope of this study. 423

Given the significant correlation between rural inversion strength and nocturnal UHII, 424

further investigation of a longer term of rural inversion strength can help diagnose the seasonal 425

variation of nocturnal UHI intensity.  Thus, longer term Mesonet data (April 2009-December 426

2012) are examined.  Monthly variation of median, 25/75%, and 5/95% percentiles of daily mean 427

nocturnal rural inversion strength around OKC during this longer period is shown in Fig. 13.  428

The years 2011 and 2012 were exceptionally dry (Ramsey et al. 2014).  There were only few 429

precipitation events during these years, thus more inversion data are counted for and the statistics 430

are more reliable than Fig. 11b.  The maximum median nocturnal inversion occurred in October.  431

The standard deviations of rural inversion were smaller and the extreme values (indicated by 432

95% percentile) of rural inversion were lower in June and July (Fig. 13).  Given the relationship 433
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between rural inversion and UHI intensity discussed above, the strongest nocturnal UHI was less 434

likely to occur in June and July.   435

Wind speed has been reported to modulate UHI intensity in various cities (Morris et al. 436

2001; Unger et al. 2001; Fast et al. 2005; Steeneveld et al. 2011).  The correlation between rural 437

wind speed and nocturnal UHI intensity during April 2009-October 2010 was examined.  438

Nocturnal UHI intensity normally decreased with increased wind speed with a correlation 439

coefficient of -0.72 (Fig. 12b).  Larger wind speed leads to stronger turbulence and stronger 440

mechanical vertical mixing, which reduce or eliminate rural background nocturnal temperature 441

inversion.  Since rural temperature inversion is a good indicator of nocturnal UHI intensity as 442

discussed above, larger wind speeds decrease UHI intensity.  Other processes (e.g., clouds) also 443

play roles in modulating UHI intensity (Morris et al. 2001; Rosenzweig et al. 2005; Yow and 444

Carbone 2006; Hoffmann et al. 2012), which can partially explain the scattering of the data 445

points in Fig. 12b.  Unfortunately, cloud data are not available from OKCNET and Mesonet 446

sites.   447

Even though a clear warm-cold season contrast in the magnitude of UHII in OKC was 448

not discerned during April 2009-October 2010 (Fig. 10a), seasonal variation of the timing of 449

UHI was prominent (Fig. 14).  Figure 14 shows the mean UHII at OKCNET sites as a function 450

of month and time of the day.  Note comparison of UHI intensity between different months in 451

Fig. 14 is not meaningful since the number of available data during each month is different (see 452

the data availability in Fig. 10a after removing periods with precipitation and missing data at 453

certain sites).  Figure 14 further confirms the prominent diurnal variation of UHI intensity, i.e., 454

nocturnal UHI was strong while daytime UHI was weak.  The timing of onset/subsiding of 455

nocturnal UHI showed a clear monthly variation.  The time span of nocturnal UHI was short 456
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during warm months, while it was relatively longer during cold months.  The onset timing of 457

nocturnal UHI roughly followed the sunset time.  This further confirms the critical roles played 458

by the physical processes during the EET in the development of UHI.  459

4. Conclusions and discussion 460

Using the data recorded from a dense surface observing network, i.e., the Oklahoma City 461

micronet, during April 2009-October 2010, observed spatial distribution of UHII over Oklahoma 462

City (OKC) is investigated.  UHII exhibited a large spatial variation over OKC.  The widely-463

varied UHII over OKC is partially explained by the different surface structure and cover at each 464

site.  The large variation of UHII across the urban area suggests that determining UHII using the 465

temperature difference between an individual urban-rural site pair may lack objective meaning.  466

It is better to classify measurement sites into detailed categories for objective UHI quantification 467

and description as suggested by recent studies (e.g., Basara et al. 2010). 468

During both daytime and nighttime, the strongest UHII was mostly confined around the 469

central business district (CBD) where surface roughness is the highest in the OKC metropolitan 470

area.  These results do not corroborate the roughness warming theory of Zhao et al. (2014), 471

according to which, aerodynamically smoother urban areas would experience stronger daytime 472

UHII than aerodynamically rougher urban areas (e.g., CBD). 473

UHII of OKC increased prominently around the early evening transition (EET) and 474

stayed at a fairly constant level through the night.  The boundary-layer processes during the EET 475

played a critical role in determining the nocturnal UHII in the absence of disturbances such as 476

precipitation.  Associated with rapid decline of solar radiation during the EET, a stable boundary 477

layer develops close to the ground.  Rural temperatures in the shallow stable boundary layer 478

decrease quickly due to radiative cooling.  Meanwhile, heat stored in the urban building 479
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materials during the day released rapidly, together with the anthropogenic heat emissions, heated 480

the urban boundary layer. This extra heat, together with reduced outgoing longwave radiation 481

(due to wall reflection etc.) and elevated roughness, led to a more neutral urban boundary layer, 482

in which temperature near the surface decreased slower than in the rural stable boundary layer.  483

As a result of different cooling rates between urban and rural, UHII increased rapidly during the 484

EET.  The near-surface cooling rate in the rural area during the EET regulated the nocturnal 485

UHII with a correlation coefficient of -0.63.  Factors such as wind speed and clouds may have 486

affected the stability/depth of background nocturnal boundary layer, thus modulating UHII. 487

Nocturnal rural temperature inversion strength had a similar day-to-day variation as that 488

of UHII.  The nocturnal UHII and surrounding rural inversion strength are significantly 489

correlated with a correlation coefficient of 0.79.  A stronger rural inversion normally means a 490

shallower surface layer and a larger EET temperature decrease in rural area compared to the 491

urban area, which leads to a stronger UHII.  The rural inversion strength did not show a clear 492

warm-cold season contrast during April 2009-October 2010.  Thus warm-cold season contrast of 493

UHII in OKC was not prominent during this period.  Analysis of a longer term (April 2009-494

December 2012) of rural inversion strength suggested that the strongest nocturnal UHI in OKC 495

was more likely to occur in months other than June and July.  Seasonal variation of the timing of 496

UHI was prominent with shorter/longer time span of nocturnal UHI during warm/cold months, 497

which is directly linked to the sunset and sunrise timings. 498

Though not shown here, surface ozone (O3) was removed during the EET due to 499

deposition and chemical reactions in the stable boundary layer.  Shallower the stable boundary 500

layer normally led to a quicker surface O3 reduction.  The O3 removal rate during the EET 501

showed a good correlation with the rural cooling rate.  Thus, the characteristics of certain 502
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chemical species such as O3 during the EET can be used together with the rural cooling rates as 503

indications of UHI development.  The ambient concentration of other pollutants can be also 504

indicative of the nocturnal UHII (Lai and Cheng 2009).  505
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Figure captions:  923

Figure 1. (a) Location of the OKCNET stations (red dots) and seven surrounding Oklahoma 924

Mesonet sites (i.e., ELRE, GUTH, KIN2, MINC, NRMN, WASH, and SPEN in blue dots). The 925

central business district (CBD) of OKC is also marked. The background shade corresponds to the 926

land use categories derived from the U.S. Geological Survey (USGS) 2006 National Land Cover 927

Data (NLCD) at a spatial resolution of 30 meters, in which the urban land use was divided into 928

three categories: low-intensity residential (category 31), high-intensity residential (32), and 929

commercial/industrial (33). In the CBD, symbols overlap due to the high spatial density of the 930

OKCNET stations. (b) Spatial distribution of built-up area fraction also derived from the NLCD. 931

  932

 Figure 2. Spatial distribution of (a, b) mean UHII (defined as the difference between 933

temperature at each OKCNET site and rural background temperature computed as average 934

temperature at the seven Mesonet sites) and (c, d) wind speed during (top) daytime (i.e., 0900-935

1700 CST) and (bottom) nighttime (i.e., 2200-0500 CST) in April 2009-October 2010.  The 936

background shade shows again the land use categories derived from the 2006 National Land 937

Cover Data (NLCD). In the CBD, not all station names are shown. 938

 939

 Figure 3. Spatial patterns of (a, b) mean UHII and (c, d) wind speed computed with a kriging 940

interpolation method (using the data shown in Fig. 2) during (top) daytime and (bottom) 941

nighttime in April 2009-October 2010. As reference, the location of some of the sites is indicated 942

by the station names. 943

  944

Figure 4. a) Mean diurnal variation of UHII at each OKCNET site during April 2009-October 945

2010. The OKCNET sites are classified into three categories (i.e., urban, suburban, and rural) 946

with different colors based on the neighborhood land cover characteristics surveyed in Basara et 947

al. (2010). b) Similar as a), but the OKCNET sites are classified into different urban climate 948

zones (UCZs) defined by Oke (2004). 949

   950

Figure 5. Mean diurnal variation of Richardson number (Ri) and short wave radiation at 10 951

mesonet sites around OKC (i.e., OKCE, OKCN, OKCW, MINC, SPEN, ELRE, GUTH, KIN2, 952

NRMN, and WASH) during April 2009-October 2010. 953

   954

Figure 6. Mean diurnal variation of wind speed (WSPD) at OKCNET sites during April 2009-955

October 2010. 956

  957
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Figure 7. Correlation between rural cooling rate during the early evening transition (EET, i.e., 2 958

hours before sunset) and average UHII at early evening (2 hours after sunset) at OKCNET urban 959

sites during April 2009-October 2010. 960

   961

Figure 8. Spatial distribution of average temperature change rate during the early evening and 962

morning transition based on (a) spatially distributed observations and (b) Kriging analysis.  963

   964

Figure 9. Mean diurnal variation of wind speed difference between OKCNET sites and the seven 965

surrounding mesonet sites during April 2009-October 2010. 966

  967

Figure 10. Time series of (a) UHII at OKCNET urban sites and (b) rural average temperature 968

inversion at the seven surrounding mesonet sites during April 2009-October 2010. 969

 970

Figure 11. Monthly variation of median, 25/75%, and 5/95% percentiles of mean nocturnal 971

(2200-0500 CST) (a) UHII and (b) rural inversion strength around OKC during April 2009-972

October 2010. 973

     974

Figure 12. Correlations between daily nocturnal (2200-0500 CST) UHII at the OKCNET urban 975

sites and (a) rural inversion strength, and (b) rural wind speed during April 2009-October 2010. 976

   977

Figure 13. Monthly variation of median, 25/75%, and 5/95% percentiles of mean nocturnal 978

(2200-0500 CST) rural inversion strength around OKC during April 2009-December 2012. 979

   980

Figure 14. Mean UHII over the OKCNET sites as a function of month and time of the day.   981
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Figure 1. (a) Location of the OKCNET stations (red dots) and seven surrounding Oklahoma 
Mesonet sites (i.e., ELRE, GUTH, KIN2, MINC, NRMN, WASH, and SPEN in blue dots). The 
central business district (CBD) of OKC is also marked. The background shade corresponds to the 
land use categories derived from the U.S. Geological Survey (USGS) 2006 National Land Cover 
Data (NLCD) at a spatial resolution of 30 meters, in which the urban land use was divided into 
three categories: low-intensity residential (category 31), high-intensity residential (32), and 
commercial/industrial (33). In the CBD, symbols overlap due to the high spatial density of the 
OKCNET stations. (b) Spatial distribution of built-up area fraction also derived from the NLCD. 
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Figure 2. Spatial distribution of (a, b) mean UHII (defined as the difference between temperature at each 
OKCNET site and rural background temperature computed as average temperature at the seven Mesonet sites) 
and (c, d) wind speed during (top) daytime (i.e., 0900-1700 CST) and (bottom) nighttime (i.e., 2200-0500 CST) 
in April 2009-October 2010.  The background shade shows again the land use categories derived from the 2006 
National Land Cover Data (NLCD). In the CBD, not all station names are shown. 
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Figure 3. Spatial patterns of (a, b) mean UHII and (c, d) wind speed computed with a kriging interpolation 
method (using the data shown in Fig. 2) during (top) daytime and (bottom) nighttime in April 2009-October 
2010. As reference, the location of some of the sites is indicated by the station names. 
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Figure 4. a) Mean diurnal variation of UHII at each OKCNET site during April 2009-October 2010. The 
OKCNET sites are classified into three categories (i.e., urban, suburban, and rural) with different colors based 
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on the neighborhood land cover characteristics surveyed in Basara et al. (2010). b) Similar as a), but the 
OKCNET sites are classified into different urban climate zones (UCZs) defined by Oke (2004). 

 



6 

  

Figure 5. Mean diurnal variation of Richardson number (Ri) and short wave radiation at 10 mesonet sites around 
OKC (i.e., OKCE, OKCN, OKCW, MINC, SPEN, ELRE, GUTH, KIN2, NRMN, and WASH) during April 
2009-October 2010. 
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Figure 6. Mean diurnal variation of wind speed (WSPD) at OKCNET sites during April 2009-October 2010. 
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Figure 7. Correlation between rural cooling rate during the early evening transition (EET, i.e., 2 hours before 
sunset) and average UHII at early evening (2 hours after sunset) at OKCNET urban sites during April 2009-
October 2010. 
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Figure 8. Spatial distribution of average temperature change rate during the early evening and 
morning transition based on (a) spatially distributed observations and (b) Kriging analysis.  
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Figure 9. Mean diurnal variation of wind speed difference between OKCNET sites and the seven 

surrounding mesonet sites during April 2009-October 2010. 
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Figure 10. Time series of (a) UHII at OKCNET urban sites and (b) rural average temperature 
inversion at the seven surrounding mesonet sites during April 2009-October 2010. 
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Figure 11. Monthly variation of median, 25/75%, and 5/95% percentiles of mean nocturnal 
(2200-0500 CST) (a) UHII and (b) rural inversion strength around OKC during April 2009-
October 2010. 
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Figure 12. Correlations between daily nocturnal (2200-0500 CST) UHII at the OKCNET urban 
sites and (a) rural inversion strength, and (b) rural wind speed during April 2009-October 2010. 
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Figure 13. Monthly variation of median, 25/75%, and 5/95% percentiles of mean nocturnal 
(2200-0500 CST) rural inversion strength around OKC during April 2009-December 2012. 
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Figure 14. Mean UHII over the OKCNET sites as a function of month and time of the day.   

 

  


