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Katabatic flow theory and modeling 
 
1.  Prandtl Slope Model and its Extensions (Prandtl 1942) 
 

      Exact solution of Navier-Stokes equations for 1D flow down an 
 infinite planar cooled surface in a stably stratified fluid.  Good 
 description of mean flow when eddy viscosity is tuned. 
 
2.  Hydraulic Flow Theory (Ball 1956, Doran & Horst 1983) 
 

      Layer-mean equations are solved with imposed shape factors and 
 entrainment rates. Can be applied to katabatic jumps.  
 
3.  3-D Mesoscale Modeling (many refs, e.g., Renfrew 2004) 
 

      Strong and weak katabatic flow simulation over complex drainage  
      basins, Greenland and Antarctica ice-sheets.  
 
4.  Large-Eddy Simulation (Skyllingstad 2003) 
 

 Examined role of turbulence in determining mean flow characteristics   
 in katabatic flow down a cooled cone. 
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Prandtl's katabatic flow model (1942) 

U

Β
  θ2

 ∇θ

  θ1

 
 

Steady 1-D flow of viscous fluid along a uniformly cooled sloping planar 
surface in a stably stratified atmosphere.  
 

   0 =UN2sinα +κ ∂2B
∂Z2

,  0=−Bsinα + ν∂2U
∂Z2

 
 
With variables and parameters suitably redefined, this Prandtl katabatic 
model is identical to the Ekman model (Ekman spiral).  
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Extensions of the Prandtl model 
 
Gutman & Malbackov (1964), Lykosov & Gutman (1972), Gutman & 
Melgarejo (1981), Gutman (1983) considered 
 

  - Coriolis force 
  - external pressure gradient force 
  - time dependence 
  - simple but non-constant (eddy) viscosities  
 
Grisogono & Oerlemans (2001, 2002) considered general vertical 
variations in eddy viscosity via the WKB approximation.  
 
Egger (1981), Kondo (1984), Shapiro & Fedorovich (2008) and Axelsen et 
al. (2010) considered surface thermal inhomogeneity with linearized 
governing equations. 
 
Shapiro & Fedorovich (2007) and Burkholder et al. (2009) considered 
surface thermal inhomogeneity within the context of nonlinear models. 
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Examples of surface thermal inhomogeneities 

 
- Differential cloud cover 
 
- Differential topographic shading (e.g., upper slopes are shaded  
  while lower slopes are sunlit) 
 
- Differential soil moisture (e.g., from variable surface rainfall) 
 
- Isolated patches of snow/ice on a slope 
 
- Variations in snow/ice coverage (e.g., ablation zone of glaciers) 
 
- Variations in vegetation type or coverage 
 
- Variations in land use 
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Purpose of this study 
 
Develop a simple boundary-layer theory to gain insight into the structure 
of katabatic flows induced by down-slope-varying thermal forcings.    
 

We focus on top-hat profiles of buoyancy on a planar slope – the simplest 
geometry to study surface thermal inhomogeneity. This work extends the 
analyses of Egger (1981), Kondo (1984) and Burkholder et al. (2009). 
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Model assumptions/restrictions 
 
-  "Local" katabatic flow – no ambient wind or synoptic-scale p.g.f. 
 
-  Steady state 
 
-  No Coriolis force 
 
-  Linearized Boussinesq dynamics 
 
-  Boundary-layer approximation (∂2U/∂X2 << ∂2U/∂Z2) 
 
-  Hydrostatic 
 
-  No cross-slope (Y) variation in buoyancy.  This is a 2D problem. 
 
-  Constant ν, κ and Brunt-Väisälä frequency N ≡ (g/Θr)dΘ∞/dZ*. 
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Slope-following coordinate system 
 

X* 

X 

Z* 
Z 

K* K
I*
I α

 g

 

X, Z:   along-slope and slope-normal coordinates, respectively.  

U, W:   along-slope and slope-normal velocity components, respectively.  
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Linearized boundary-layer equations 

 
Down-slope equation of motion:      0 = −∂Π

∂X
− Bsinα + ν∂2U

∂Z2
         (1) 

Slope-normal equation of motion:    0 = − ∂Π
∂Z

+ Bcosα           (2) 

Thermodynamic energy equation: 0 =UN2sinα −WN2cosα +κ ∂2B
∂Z2

  (3) 

Incompressibility condition:   ∂U
∂X

+ ∂W
∂Z

= 0              (4) 

 

Π≡(P−P∞)/ρr  is normalized pressure perturbation 
B≡g(Θ−Θ∞)/Θr  is buoyancy; Θ∞  is environmental potential temperature 

 

 
Red terms in (1)–(4) were not present in the original 1D Prandtl model. 
They arise from 2D aspects of the inhomogeneous problem:  convergence, 
slope-normal ascent/descent and slope-normal advection of Θ∞ .   
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Boundary Conditions 

Slope boundary conditions 

  Impermeability condition:  W (X,0) = 0,  

  No-slip condition:    U(X,0) = 0,   

  Specified buoyancy:      B(X,0) = f (X),   

      or 

  Specified buoyancy flux:   ∂B
∂Z
(X,0) = g(X).  

 

Far-above-slope boundary conditions 

  All variables are bounded as Z→∞.  
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Non-dimensional variables 

Remove as many parameters as possible from our problem by introducing: 

 x ≡ X
Xs
, z ≡ Z

Zs
, u ≡ U

Us
, w ≡ W

Ws
, π ≡ Π

Πs
, b ≡ B

Bs
,        

where  

 

Zs ≡ (νκ )1/4
(Nsinα)1/2, Xs ≡ (νκ )

1/4 cosα
N1/2 sin3/2α , Us ≡

Bs
N

κ
ν

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/2
,

Ws ≡
Bs
N

κ
ν

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/2 sinα
cosα , Πs ≡

Bs(νκ )1/4 cosα
(Nsinα)1/2 ,

 

  

 Bs ≡
max

X∈(−∞,∞)
B(X,0), (if buoyancy is specified),

max
X∈(−∞,∞)

Zs∂B∂Z
(X,0) , (if buoyancyflux is specified).

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
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Non-dimensional problem 
 

  0 = −∂π
∂x

− b + ∂2u
∂z2

,            (5) 
 

  0 = −∂π
∂z

+ b ,                   (6)    
    

  0 = u − w + ∂2b
∂z2

,                  (7)   
     

  ∂u
∂x

+ ∂w
∂z

= 0.                   (8) 
 

Boundary condition for top-hat buoyancy:   b(x, 0) = −1, x ≤ l,
0, x > l.

⎧

⎨
⎪⎪

⎩
⎪
⎪

   (9) 

 
Thus, a flow driven by a top-hat forcing (cold strip) is fully characterized 
by a single parameter, the non-dimensional strip width:   
 
   l ≡ L

Xs
= L N1/2 sin3/2α(νκ )1/4cosα .              (10) 
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Reducing the problem to a single ODE 
  

Taking ∂ /∂z(5) – ∂ /∂x(6) eliminates π and yields the vorticity equation: 
 
  0 = − ∂b /∂x − ∂b /∂z + ∂2η /∂z2 .                      (11) 
            Baroclinic generation         Diffusion of cross-slope 
                (proportional to −∂b/∂X*)     vorticity η=∂u/∂z   

  
Introduce streamfunction ψ defined by u = ∂ψ /∂z, w = −∂ψ /∂x . The 
thermodynamic energy and vorticity equations then combine to form:  
 

 ∂2ψ
∂x2

+ 2 ∂2ψ
∂x∂z

+ ∂2ψ
∂z2

+ ∂6ψ
∂z6

= 0 .                    (12) 
 

Taking the Fourier Transform (FT) of (12) yields the ODE 
 

 d6ψ̂
dz6 + d2ψ̂dz2 + 2ikdψ̂dz − k2ψ̂ = 0 ,             (13) 

 
where ψ̂  is the FT of ψ.  
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Solving the ODE 

Apply ψ̂ ~ exp(mz) in (13), get the 6th-degree polynomial equation: 
 

 m6 = −(i k +m)2 .                       (14) 
 
Taking the square root of (14) yields the cubic equation (well 2 equations), 
 

 m3 = ± (im − k) .                                 (15)  
 
Solve (15) implicitly, by treating it as a linear equation for k. Reject the 
solutions with Re(m) > 0 to avoid unphysical blow-up of ψ̂  (and ψ) far 
above the slope. The general solution for ψ̂  can then be written as 

 
 ψ̂ = n1exp(m1z) + n2exp(m2z) + n3exp(m3z),           (16) 

 
where n1, n2, n3 are fixed by the slope boundary conditions. Get ψ  by 
evaluating the inverse FT of (16). 
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Top-hat results for large l 
 
Contour plots of ψ and b show that for large and increasing l, all flow 
structures became independent of l – so one solution fits all large-l cases. 
 

ψ  for l = 75 
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Top-hat results for l = 25 

                                             

                         

    ψ  → 

b → 
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Close-up view of upslope edge of cold strip (l = 25) 
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Vorticity dynamics of the horizontal inflow jet 
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Inflow jet as a viscous selective withdrawal layer 
 
The inflow jet is visually similar to flow of a viscous stably stratified fluid 
towards a line sink (Koh 1966). Preliminary analysis suggests the jet is 
well described by the same similarity model as in the sink problem, that is:   
 
 u~ 1

x1/3g(ζ),  w~ 1
x1/3h(ζ),  where       ζ ≡ z

x1/3 . 
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Direct numerical simulation (DNS) 
 
The nonlinear initial value problem for a suddenly imposed top-hat cold 
strip was solved via DNS.  Experiments were performed to  
 
    - verify analytical work (weak thermal disturbance) 
 

 - explore non-linear aspects of the flow (strong thermal disturbance) 
 

 - examine transient solution leading to the steady state 
 
The simulations required lots of grid points because: 
 
     - a very high resolution was needed to resolve the shallow katabatic jet 
 

 - a very tall and wide domain was needed to delay the interaction of   
   inflow/outflow jets and gravity waves with computational boundaries 
 
DNS code was a parallel version of code used by Fedorovich et al. (2001), 
Shapiro & Fedorovich (2004, 2006, 2007), and Burkholder et al. (2009).  
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Parameters for l ~ 40 experiment 
 
Physical Parameters: 
 
Slope angle:       α = 15° 
 

Slope temperature perturbation:  ΔT = 3 K 
 

Length of cold strip:     L ~ 2.8 km 
 

Brunt-Väisälä frequency:     N = 0.01 s-1 
 

Eddy viscosity/diffusivity:   ν = κ = 1 m2s-1 
 
Computational Parameters: 
 
Domain height:      h = 8 km 
 

Domain width:      d ~ 32.7 km  
 

Grid spacing:       ΔX = ΔZ = 2 m  
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Ψ  and b at t ~ 81 min 
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Zoomed-in view at t = 81 min 
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U(Z) profiles at select locations along the cold strip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Compate with Prandtl solution:  Jet height ≈ 21.8m, peak U ≈  3.22 ms-1 
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Summary 
 
The linear problem is governed by a single parameter, the strip width l.  
For large l, flow structures become independent of l, and scale as: 
 

 Zi~
(νκ )1/4

(Nsinα)1/2, Xi~
(νκ )1/4 cosα
N1/2 sin3/2α , Ui~

Bs
N

κ
ν

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/2
, Wi~

Bs
N

κ
ν

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/2 sinα
cosα  

 
Key features in linear solution:  
 - primary katabatic jet 
 - inflow and outflow jets flowing horizontally toward/away from slope 
 - low level rotor in baroclinic zone on upslope edge of cold strip 
 - warm thermal belt above upslope edge of cold strip 
 
DNS results are similar to linear results but with some notable differences: 
 - Prandtl regime delayed down the strip 
 - advection brings cold air down-slope off strip 
 - outflow jet is narrower and more intense than inflow jet 
 - a stationary gravity wave where primary jet erupts into outflow jet 


