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ABSTRACT 

High resolution convection-allowing ensemble systems do well to cover a wide range of possible 
outcomes, as opposed to deterministic model runs, to provide the best forecast. These ensemble 
systems, however, still struggle to produce accurate forecasts of 2-meter temperature and 2-meter dew 
point that are free of error, and much of this error can be due to systematic bias rather than random error. 
Using a method of bias correction, this systematic error can be corrected by simply removing consistent 
domain average errors from forecasts, which makes modest improvements. More advanced methods are 
explored in this study, employing the use of machine learning, specifically random forests (RF), to bias 
correct beyond what has already been done. RF models were trained on 20 historical ensemble forecast 
cases and validated on 6 independent events using a specific set of predictors, mainly focusing on land-
atmosphere interactions. Multiple hyperparameter configurations were tested to identify the most effective 
model. RF bias correction showed substantial improvement over 2 forecast lead times examined, 6 and 
21 hours. Partial dependence plots were used to interpret predictor influence, with soil moisture pressure-
related variables, and latitude and longitude emerging as key contributors. These findings suggest that 
RF-based corrections are skillful in short-term ensemble forecasting in near-surface temperature fields. 

 
  

.1. INTRODUCTION  
 
The advent of convection-allowing models 

(CAMs) in Numerical Weather Prediction (NWP) 
has improved short-term forecasting by leaps and 
bounds, as they are able to finely resolve smaller-
scale features within the model output. CAMs, with 
higher resolution and smaller grid-spacing, have 
been found to produce better forecasts in the 
short-term than models with coarser resolution 
(Schwartz et al. 2022; 2017). Convection Allowing 
Ensemble (CAE) forecast systems improve upon 
this by running multiple simulations to produce an 
output that is more all-encompassing of future 
weather. CAEs account for forecast uncertainty by 
sampling sources of initial condition and/or model 
uncertainty, which enables probabilistic forecasts 
and can reduce forecast error and biases 
compared to deterministic forecasts (Berner et al. 
2017). Schwartz et al. 2017 also found ensemble 
forecasts performed better than individual model 
runs which had a higher resolution, which 
highlights the need for ensemble-based short-
range forecasting. 
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More specifically, forecasts of 2-meter 
temperature and 2-meter dew point have major 
implications, as the accuracy of such has impacts 
on public and private sector companies, 
agriculture, aviation, and operational meteorology. 
CAEs, and NWP models in general, have 
struggled to produce forecasts that are bias-free 
(Boallegue et al. 2023), and therefore it is difficult 
for meteorologists to accurately predict these 
values consistently. The bias typically stems from 
two sources: errors with initial conditions and 
detriments within the model itself, such as 
background physics schemes (Duda et al. 2017). 
Model uncertainty is often more challenging to 
accurately sample in the CAE design, leading to 
systematic errors (i.e. bias) in all ensemble 
members. Since biases common to all members 
contribute to forecast 
error but not ensemble spread, either the 
ensemble spread should be artificially inflated or 
the biases must be identified and removed to 
achieve well-calibrated ensemble forecasts and 
optimally performing ensemble-based data 
assimilation. This study will therefore focus 
specifically on biases in 2-m temperature and dew 
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point forecasts, which are expected to be closely 
tied to model physics errors associated with the 
land-atmosphere coupling process, with main 
efforts focusing on discovering the sources of this 
error. 
 

Before causes of bias can be well 
understood, the first step is to be able to identify 
and remove the bias within the model, which is 
systematic in nature. Systematic error, as defined 
by Bouallegue et al. 2023, is the difference 
between forecast and observations that can be 
corrected for by post-processing through bias 
correction. Taking it a step further from traditional 
bias correction methods that are often based on 
simply averaging all past forecast errors, we can 
employ the use of machine learning. The use of 
machine learning (ML) in meteorological research 
has proven to be extremely useful in turbulence 
(McGovern et al. 2013; Williams 2013), hail 
(Gagne et al. 2017), climate (Chapman and 
Berner 2025), and severe weather (Hill et al. 2020) 
forecasting. ML post-processing in general has 
shown to be effective in reducing overall model 
error (Agrawal et al. 2023; Chapman et al. 2019). 
ML is unique in its ability to identify patterns in a 
dataset and then discover a connection between 
such patterns and a result that optimizes an error 
metric (Gagne et al. 2017). Hamill 2021 tested 
multiple ML methods in bias reduction and found 
that each ML model used reduced bias relative to 
raw model guidance. The same approach can be 
applied to forecasts of 2-m temperature and dew 
point, which models generally struggle with, due to 
challenges modeling land-atmosphere coupling 
and its uncertainty. 

 
This study will attempt to confirm the 

recent successes ML—and more specifically, 
Random Forest (RF) ML—has in identifying 
systematic errors, or bias, in the context of CAE 

2m temperature and dew point forecasts, as well 
as its ability to relate regional and flow-dependent 
factors to forecast model bias. Secondly, we seek 
to improve forecasts of 2-m temperature and 2-m 
dewpoint by removing those biases. Finally, we 
will investigate the RF models themselves to 
determine which regional or flow-dependent 
factors are contributing to the forecast bias. Doing 
so will not only seek to improve the accuracy of 
model forecasts but also help to guide future 
model—and model physics—improvements. 
 
 
2. METHODS AND DATA  
  

The FV3-LAM short-range CAE was 
selected for the purposes of this study. The model, 
which runs at a 3-kilometer (3-km) resolution over 
a domain encompassing the Continental United 
States (CONUS) was initialized within the 
Oklahoma University Multiscale Data Assimilation 
and Predictability (MAP) Lab as a part of the 
National Oceanic and Atmospheric Association’s 
(NOAA) Hazardous Weather Testbed (HWT) 
experiment in spring of 2022. For 26 days during 
this time period, taking place over the months of 
May and early June, the model was run almost 
every day at 00z. The ensemble-based system 
consisted of 10 members that produced forecasts 
of 2-meter (2-m) temperature and 2-m dew point, 
among other variables. The underlying physics 
parameterizations rely on Thompson Microphysics 
(Thompson and Eidhammer 2014), the MYNN-
EDMF boundary and surface layer 
parameterization (Nakanishi and Niino 2009; 
Olson et al. 2019), and the RUC-LSM scheme 
(Benjamin et al. 2004). A more detailed description 
of the inner workings of the model are detailed in 
the figure below, which is Table 1 from Gasperoni 
et al. 2023.  
 

 

 
Table 1. Background physics parameterizations categorizing the FV3-LAM model from Gasperoni et al. 
2023.  
 

The forecasts of 2-m temperature and dew 
point will be verified against Real-Time Mesoscale 
Analysis (RTMA), an analysis tool which combines 
short-term model forecasts with recorded 

observations using data assimilation methods (De 
Pondeca et al. 2011; Pondeca et al. 2015), that 
give an estimation of atmospheric conditions at 
any given time. Recent forecasts from the 3-km 
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North American Model (NAM), 1-hour forecasts 
from the 3-km High-Resolution Rapid Refresh 
Model (HRRR), and 1-hour forecasts from the 13-
km Rapid Refresh Model (RAP) are included in the 
generation of this analysis.   

 
It is important to first identify the overall 

model performance prior to applying ML post-
processing. From this, a consistent bias within the 
model was determined and removed through 
domain-average bias correction. Bias correction is 
simply the process of removing the systematic 
error from the model outputs. One way of 
determining the bias is to average error over all 
cases across the domain (Figure 1. red line). The 
outputs of 2-m temperature and dew point from 
the 10 ensemble members from the FV3-LAM 
were averaged to generate an ensemble mean 
forecast for a 21-hour lead time at 3-hour 
increments for a particular initialization of the 
model, in order to focus on the error common to all 
ensemble members. This was then averaged over 
26 all forecast dates. A root mean squared error 

(RMSE) analysis was performed on these data to 
quantify the difference between the forecasted 
values and the RTMA analyzed values—i.e. the 
accuracy of the model—and plotted for each lead 
time. The average bias was also calculated and 
plotted for each lead time. Both values are 
averaged for the entire dataset and domain. 
Finally, an improvement in RMSE was realized 
through bias correction. By simply removing the 
domain average bias from each forecast value, we 
can make an improvement to the accuracy of the 
forecast. Since bias is a consistent error within the 
model, we can shift the output of the ensemble 
mean to account for this error, yielding a more 
accurate forecast before verifying it against any 
analysis or observations. Performing yet another 
RMSE analysis on these data will provide a value 
of bias-corrected RMSE that is smaller than the 
uncorrected RMSE value. This is showcased in 
figure 1.a and 1.b, where all three of these values 
are plotted for each lead time. Formulas for each 
value are also defined below Figure 1.a and 1.b.  

 

 
Figures 1.a and 1.b. Domain average uncorrected RMSE (blue), bias-corrected RMSE (green) and bias 
(red) for increasing lead times out to 21 hours in 3-hour increments averaged over all 26 forecast dates. A 
noticeable increase in model accuracy is noted in both cases by bias correction (as noted by the 
downward shift of the plot). Negative values of bias indicate that the model typically underpredicts the 
observations (forecast is cooler than analysis), and positive values demonstrate an overprediction of the 
forecast compared to analysis.   
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Formula 1. Calculation of uncorrected model root-
mean squared error  
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Formula 2. Calculation of model bias  
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Formula 3. Calculation of bias-corrected root-
mean squared error  
 

In contrast to a domain-average estimate 
of bias, ML methods are an attractive option to 
account for the potentially nonlinear interactions 
among geographic regions and meteorological 
variables in determining systematic error. In 
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particular, the Random Forest (RF) machine 
learning (ML) model (Breiman 2001) is a collection 
of decision trees built on random data and 
features, which it then combines to improve 
prediction accuracy. At each branch of the tree-
growing process, a different subset of random 
variables is evaluated for inclusion into the tree, 
which ensures the independence of each tree 
(Gagne et al. 2017). Each tree learns to make 
predictions based on different sets of data, and 
then the forest aggregates them. RF is a powerful 
tool for model error reduction, because of its ability 
to pick out nonlinear relationships that would go 
unnoticed by human eyes. Also, there is a strong 
need for regional, and flow-dependent model bias 
correction (Reynolds et al. 2022), and RF ML has 
proven successful in doing so (Pham et al. 2021). 
Finally, RF has great skill in a state-dependent 
approach to bias correction, which is the process 
of relating background flow patterns (such as 
cloud cover, wind direction, or soil temperature) 
(Chapman and Berner 2025).   

 
For the purposes of this project, we will 

employ the use of the Scikit-Learn Python Library, 
and the RandomForestRegressor (Pedregosa et 
al. 2011). To do this, the RF was trained on a 
selection of so-called predictors, or meteorological 
variables within the model that potentially cause 
error. Previous work has shown the importance of 
multiple-predictor ML methods in calibrating 
models (Gagne et al. 2014) such as the one 
included in this research. A brief qualitative 
investigation of 3-4 forecast cases was done, 
which involved a comparison of forecast error to 
the background synoptic regime for a particular 
day. From this, we determined a set of predictors 
that may potentially be related to the systematic 
forecast error. We especially focus on land-
atmosphere interactions during the selection of 
predictors because these generally have the 
greatest impact on 2-m temperature and dew point 
observations, but we include other interactions 
that may play a role in the determination of these 
values. Table 2 below provides the set of 
predictors used to train the RF model. Out of the 
26 days in the 2022 HWT Spring Experiment, 20 
were used to train the RF based upon the 
predictors, with 6 cases (randomly spread across 
the experiment period) being left aside to apply the 
trained model, and a verification process took 
place to evaluate the accuracy of the RF as 
compared to the observed error from these 6 
validation cases.   
 

 
Table 2. List of predictors used to train the RF   
 
 RF models are typically trained using a 
specific set of hyperparameters, which includes a 
set number of decision trees within the forest, the 
maximum depth each tree is allowed to grow, the 
minimum number of samples each leaf node must 
have after being split, and the maximum number 
of features to take into account to make the best 
split of data. Tweaking the hyperparameters will 
yield differing results when being applied to the 
same case, so a multitude of RF trainings were 
completed to deduce which set of 
hyperparameters were most successful. Only 
maximum tree depth and minimum samples per 
leaf were altered for testing; forest size was kept 
constant at 100 decision trees for each training 
case. Table 3 below lists out the different 
combinations of hyperparameters for which the RF 
was trained on. The RF was trained on these 9 
possibilities for forecast lead times of 6 and 21 
hours for both 2-m temperature and 2-m dew 
point, creating 36 trained RF models. This was 
done to compare the model’s performance in a 
daytime versus a nighttime environment, as well 
as to visualize how the model performed as lead 
times increased. The chosen range of 
hyperparameters from Table 3 was guided by 
preliminary experiments at early stages of the 
project which indicated error consistently 
increased for larger values of minimum samples 
and smaller values of maximum depth.  
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Table 3. List of combinations of maximum depth 
and minimum samples per leaf hyperparameters 
used to train the RF models during the 
hyperparameter tuning process  
 
 Finally, diagnostic statistics were run to 
examine the trained RF model to determine which 
predictors were most influential in the training and 
application of the ML model, as well as the 
regional and state dependence of the forecast 
error. This was done on the trained model that 
performed best compared to the others at each 
forecast lead time. A test of variable impurity 
importance (McGovern et al. 2019) was done to 
determine how much each input feature 
contributed to the training of the RF and therefore 
how much each input feature contributes to the 
RF-based bias. After training, an importance score 
was calculated for each model, the formula for 
which is below in figure 3. 𝐼 (𝑝) 
 is the importance score of a given predictor, T is 
the total number of trees in the ensemble, 𝑠 ∈ 𝑆௧,௣ 
is all the splits in tree t where p is used,  
∆𝑖 (𝑠) is the decrease in impurity due to split s, N 
is the total number of training samples, and 𝑁௦ 
is the number of samples that reached node s. 
Features with higher values of 𝐼 (𝑝) contribute 
most to reducing the impurity across the data 
because they either split the data more effectively 
or closer to the root of the tree.  
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Formula 4. Importance score formula   
 
 
3. RESULTS 
 
3.1 Hyperparameter Tuning Results  
 

Upon the application of the trained RF 
models, each model was tested to determine 
which model had the best performance relative to 
the others for 2-m temperature and 2-m dewpoint 
at 6-hour and 21-hour forecast lead times. Each 
individual model included an output of its RF-
based estimate of bias, and a bias corrected 
output of the forecast error. Using a similar 
formula to bias corrected RMSE from Formula 3, 
only changing the domain-average estimate of 
bias to the trained-RF estimate of bias, an analysis 
was performed on these to determine which model 
was best at reducing error through bias 
correction—i.e. which model generated the lowest 
bias-corrected RMSE value. Four heatmaps were 
created to help visualize which set of 
hyperparameters used to train the RF was most 
successful in reducing RMSE, one for both 2-m 
temperature and 2-m dew point at both 6 and 21 
hour forecast times. Figures 2.a-d below includes 
these heatmaps, along with RF bias corrected 
RMSE values, with cooler colors corresponding to 
lower error and warmer colors being higher error. 
For all cases, it appears that training the model on 
a higher value of maximum depth increases the 
skill of the RF, but increasing the minimum 
number of samples per node had either a slightly 
negative impact, or no impact at all. Overall, the 
best performing RF model for all four cases used a 
max depth value of 20 and a minimum samples 
per leaf value of 10, which produced the lowest 
RMSE values across the range of 
hyperparameters considered.   
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Figures 2.a-d. Heatmaps showcasing the combination of hyperparameters with the best performance for 
temperature and dew point at forecast hour 6 and 21. Notably, in all four test cases, the RF performed 
best when the max depth was set equal to 20, and the minimum samples per leaf was set equal to 10.  
 

3.2 Overall RF Performance 
 
 For the sake of comparing apples to 
apples, model performance was reevaluated to 
analyze uncorrected RMSE for just the 6 validation 
cases, rather than the entire dataset, which was 
then bias corrected using the 20 cases outside the 
validation cases. This was done to compare RF-
based bias correction to domain average bias 
correction, because the RF models were trained to 
relate predictors to forecast error for the 20 
training cases and then validated against the 6 
validation cases without having been exposed to 
them prior. Figures 3.a and 3.b showcase these 
two trends with increasing lead time, as well as a 
comparison to the RF postprocessed RMSE, 
represented by the two red x’s. For both 2-meter 

temperature and dew point, RF postprocessing 
outperformed general domain average bias 
reduction substantially at both 6-hour and 21-hour 
lead times. For temperature forecasts, domain 
average bias correction reduced RMSE modestly, 
creating a 3.9% reduction at hour 6 and a 
12.7% reduction at forecast hour 21. RF 
performed significantly better, reducing RMSE by 
25.4% at the 6-hour lead time and 38.4% in hour 
21 forecasts. Similarly for dew point forecasts, 
domain average bias correction provided marginal 
improvements; a mere 1.1% at hour 6 and 1.3% at 
hour 21, but RF was far more successful in 
reducing forecast model error. RF reduced RMSE 
by 15.2% in 6-hour forecasts and 26.6% at the 21-
hour lead time.   
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Figures 3.a and 3.b. Plots displaying RMSE of 6 validation cases (blue), which is domain average bias 
corrected by 20 training cases (green), similarly to how the RF was trained. Red x’s represent the RF 
postprocessed bias corrected RMSE.  
 
3.3 RF Model Impurity Importance 
 

Upon training the RF models, an impurity-
based importance score was calculated for each 
predictor to determine which variables had the 
greatest impact on the output of the trained RF 
models. Figures 4.a-d includes the results of this 
analysis, with higher bars indicating higher feature 
importance. It is clear to see that latitude and 
longitude have a major impact, implying that 
geographic location is a strong predictor for both 
2-m temperature and 2-m dew point error at all 
lead times. This also solidifies the fact that there 
are regional dependencies in temperature and 
dew point forecasts, or they are geographically 
patterned, which the RF was able to pick up on. 
Soil water appears to be a common indicator of 
model bias across all cases, but especially for 2-m 

temperature at forecast hour 6. Subsurface 
thermal conditions also appear to be correlated 
with forecast accuracy, especially at the 21-hour 
lead time. 2-m temperature, 2-m dew point, and 
sea level pressure are moderately important, and 
these variables contribute somewhat to explaining 
where bias occurs, suggesting the bias in the 
forecast model systematically depends on the 
local meteorological conditions in addition to 
geographic location. Other features, such as 
precipitation accumulations (total and 1-hour), 
cloud cover, and wind direction appear to be less 
indicative of forecast bias, perhaps because the 
forecast model handles these variables well, or 
their effect on temperature and dewpoint forecasts 
is negligible, random (i.e. not systematic and 
predictable), or dependent on other variables not 
included in our model.  
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Figures 4a-d. Bar graphs displaying impurity-based variable importance from each RF. Higher bars 
indicate predictors that were more effective in splitting the data and contributed more to reducing impurity 
across the trees.   
 
 Following sections of this paper will 
discuss results regarding both 1-dimensional (1-D) 
and 2-dimensional (2-D) partial dependence plots. 
1-D plots show how RF’s prediction of forecast 
bias changes (y-axis) as a certain meteorological 
variable is altered (x-axis), while holding all other 
predictors in consideration constant. Similarly, the 
2-D plots compare two meteorological variables 
whose values vary along the x and y-axis, 
depending on the feature, but the RF predicted 
bias is plotted spatially, rather than along an axis.  
 
3.4 Partial Dependence Results for 
Temperature Forecast Hour 6 
 
 Figures 5a-f below includes 1-D partial 
dependence plots of the top six predictors from 
impurity importance calculations for the 6-hour 
forecast of temperature. The forecast model 
performs very poorly when soil water contents are 
very low, or dry, as the RF predicts very high 

values of bias in these cases, with lower values of 
bias as water content is increased. Figure 
5.b implies that lower sea level pressures are 
correlated with slightly higher RF predicted bias, 
indicating that synoptic low-pressure regimes 
could be more difficult to model. The consistent 
positive slope of partial dependence for cloud top 
brightness temperature (brtmp) in Figure 5.f 
indicates that cooler cloud tops are linked with 
greater error as compared to higher temperatures, 
which more represent clear-sky conditions. This 
implies that the forecast model may struggle to 
forecast temperature at this lead time when 
convective cloud cover is present. The overall 
flatness of Figure 5.c, plotting the soil temperature 
variable, illustrates its lack of impact on error, and 
that the model does not strongly depend on this 
variable in isolation. Finally, looking at latitude and 
longitude as predictors (Figures 5.d and 5.e), we 
can better detect the regional dependence of 
forecast bias within our forecast model.  
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Figures 5a-f. 1-Dimensional Partial Dependence Plots for the six most important predictors, based upon 
results from impurity importance tests, for 2-m temperature at 6-hour lead time. Figures a-f, going in 
order, are plots 1-D partial dependence plots of soil water, sea level pressure, soil temperature, latitude, 
longitude, and cloud top brightness temperature.  
 

As mentioned before, RF is beneficial 
because of its ability to pick up on nonlinear 
relationships between seemingly unrelated 
meteorological variables. Figures 6.a-c shows a 
group of those relationships, with the first between 
u- and v-wind speeds in Figure 6.a, showing that 
forecasted RF bias for 2-meter temperature 
appears slightly higher (more negative, in this 
case) in southerly flow events, with the inclusion of 
increasingly strong (positive and negative) u-winds 
generating even more forecasted bias. This 
implies that the forecast model generally struggles 
in predicting temperature in strong southeasterly 
and southwesterly flow patterns across the entire 
domain. These two flow regimes generally 
correspond to warm-air advection events, so 
perhaps the forecast model struggles with 
modeling these scenarios as compared to cold-air 
advection events at this forecast lead time. The 

forecast model appears to perform best when the 
u-component of wind is close to zero, or a due 
north/south flow pattern is present, since RF 
predicted forecast bias tends to increase in the 
positive and negative directions as the velocity of 
the u-wind component increases (Note the 
symmetry along the u10=0 axis).  
 

The most important predictor at this 
forecast hour, soil water, is also found to be 
dependent on geographic location. Figures 6.b 
and 6.c detail how dry soil moisture induced bias 
varies spatially. The highest RF predicted biases 
tend to be in both low longitudes (west) and low 
latitudes (south). Though the model struggles with 
dry soil water content at this forecast hour across 
the entire domain, this problem is exacerbated in 
these regions specifically, highlighting the desert 
southwest as a trouble spot using this predictor.   
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Figures 6.a-c 2-dimensional partial dependence plots for u- and v-wind (7.a), soil water and latitude (7.b) 
and soil water and longitude (7.c)  
 
3.5 Partial Dependence Results for 
Temperature Forecast Hour 21 
 
 Soil water (Figure 7.a) is still an important 
predictor of RF forecast temperature bias at the 
21-hour lead time, as the forecast model struggles 
with forecasting temperature when soil water 
content is higher (> 0.15), dissimilar from earlier 
forecast lead times, which struggle with drier soil 
conditions. Most glaringly, there is a very strong 
dependence on soil temperature at this lead time, 
higher RF predicted bias values as soil 
temperatures decrease below approximately 293K 
(68F), indicating that the forecast model 

significantly underpredicts 2-m temperature below 
this threshold. Another strong dependency lies 
upon east/west extent of the domain, with a sharp 
drop-off in forecast model accuracy—and a sharp 
increase in systematic error—east of longitude 
264 (as seen in Figure 7.e). Finally, slight 
dependencies reside in sea level pressure (Figure 
7.b) and cloud top brightness temperature (Figure 
7.f) at this lead time. They are rather modest but 
could imply that the model struggles to model 2-m 
temperature with higher values of each (high-
pressure regimes, and little to no cloud cover, 
respectively), typically producing cold biases. 

 

 
Figures 7.a-f. 1-Dimensional Partial Dependence Plots for the six most important predictors, based upon 
results from impurity importance tests, for 2-m temperature at 21-hour lead time. Figures a-f, going in 
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order, are plots of soil water, sea level pressure, soil temperature, latitude, longitude, and cloud top 
brightness temperature.  
 
 Figure 8.a below illustrates another 
relationship between u and v-wind components, 
but notes that the highest forecasted bias by the 
RF is when wind speeds are calm, or below 
around 3 knots. Predicted bias begins to decrease 
slightly by increasing the wind speeds in any given 
direction. Given that the forecast model initializes 
at 00z, the 21-hour forecast falls within late 
afternoon hours where peak heating typically 
occurs. A prevailing hypothesis for this bias is that 
the forecast model may struggle with the extent of 

afternoon surface heating when wind conditions 
are calm, as the forecast model often 
underpredicts 2-m temperature at this time. Figure 
8.b highlights another relationship between soil 
temperature and soil water content, noting that 
there is a strong cold bias within our model when 
soil moisture is higher and soil temperature is 
lower. Similarly, another strong cold bias appears 
in high pressure regimes that are co-located with 
cool soil temperatures (Figure 8.c).  

 

 
Figures 8a-c. 2-D partial dependence plots of u and v-wind components (9.a), soil water and soil 
temperature (9.b) and sea level pressure and soil temperature (9.c).   
  
3.6 Partial Dependence Results for Dew Point 
Forecast Hour 6 
 
 Looking now at the same predictors for 2-
m dew point at the hour 6 lead time in Figures 9.a-
f, the forecast model continues to struggle with 
these forecasts depending on soil moisture 
content (Figure 9.a) and soil temperature (Figure 
9.c), as well as geographic location (Figures 9.d 
and 9.e). Focusing on the first, RF predicted bias 
becomes more prevalent as soil water moves 
beyond 0.10, and predicted bias is highest in the 
middle range of soil moisture (0.10-0.25). This 
could be because the forecast model incorrectly 
predicts the extent to which water is evaporated 
from the soil, resulting in higher dew point 
forecasts than observations. Forecast model 

accuracy decreases significantly with decreasing 
soil temperatures, especially below 287K, where 
the forecast model increasingly overpredicts the 
dew point temperature at this forecast hour. 
Forecast model dew point forecast accuracy is 
also highly dependent on geographic location, with 
forecasts being significantly worse at lower 
longitudes (west) and higher latitudes (north). 
Finally, varying values of sea level pressure 
(Figure 9.b) and cloud top brightness temperature 
(Figure 9.f) yields no significant changes in RF 
forecasted bias, as they are relatively flat, so the 
forecast model does not depend on these 
variables in isolation, though a slight relationship 
to forecast bias could be present at lower sea level 
pressures or at the peak in RF forecasted bias at 
around 290K cloud top brightness temperature.   
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Figures 9.a-f. 1-Dimensional Partial Dependence Plots for the six most important predictors, based upon 
results from impurity importance tests, for 2-m dew point at 6-hour lead time. Figures a-f, going in order, 
are plots of soil water, sea level pressure, soil temperature, latitude, longitude, and cloud top brightness 
temperature.  
 
 Switching gears to analyze relationships 
between the features, we note a maximum in RF 
predicted bias across most forecasted 
temperatures, but latitudes 39-43N typically tend 
to have larger systematic errors in this relationship 
(Figure 10.a). Higher forecasted temperatures and 
lower latitudes tend to be a strength of the forecast 
model.  Another dependence exists between 2-m 
temperature and soil temperature features (Figure 
10.b), where RF predicted bias tends to increase 
as air temperature and soil temperature decrease, 
hinting that the forecast model overpredicts 
surface moisture flux in conditions with limited 
evaporation. At lower forecasted temperatures and 
dew points at 2 meters, where the forecast model 
tends to overpredict the dew point in these 
forecasts (Figure 10.c). For this same relationship, 
the forecast model tends to perform best in a 
window where temperatures are at the upper 

extreme of the range at this hour (75F), and 
surface moisture conditions are higher.   
 
 As we compare the regional differences 
for soil moisture content for 6-hour forecasts of 
dew point to 6-hour forecasts of temperature, we 
can see that the highest RF predicted bias is 
highest at very similar longitudes (Figure 10.d) 
despite having differing levels of accuracy under 
different amounts of soil water. However, a 
difference lies in the latitudinal dependence, as the 
forecast model overpredicts dew points the most 
at latitudes north of 40N, whereas temperature 
forecasts are too cool at lower latitudes (36N and 
south) (Figure 10.e). Finally, dew point forecasts 
are too warm in western portions of the domain, 
specifically when soil temperatures are below 
280K (Figure 10.f).  
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Figures 10.a-f. 2-Dimensional partial dependence plots of 2-m temperature and latitude (11.a), 2-m 
temperature and soil temperature (11.b), 2-m temperature and 2-m dew point (11.c), soil water and 
longitude (11.d), soil water and latitude (11.e), and soil temperature and longitude (11.f).   
 
3.7 Partial Dependence Results for Dew Point 
Forecast Hour 21 
 
 Consistent with Figure 9.a, the forecast 
model continues to struggle with the mid-range 
(0.10-0.25) for soil water at forecast hour 21, but in 
increasing the lead time, so has the RF predicted 
bias on the high end (0.25-0.35), whereas in 
Figure 9.a there was a slight increase in RF 
predicted bias. Trends from sea level pressure 
(Figure 11.b) and cloud top brightness 
temperature (Figure 11.f) have remained constant 

with bias only increasing due to increased lead 
time. Similarly to Figure 7.c, forecast model bias is 
highly dependent on soil temperature at the 21-
hour forecast time, with effects amplifying 
significantly. Continuing the trend from hour 6, 
cooler soil temperatures are responsible for great 
overestimations in forecasted dew point 
temperature. Geographic dependencies seemed 
to remain consistent between forecast hours, with 
differences coming from increased biases with 
longer lead times.  
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Figures 11.a-f. 1-Dimensional Partial Dependence Plots for the six most important predictors, based upon 
results from impurity importance tests, for 2-m dew point at 21-hour lead time. Figures a-f, going in order, 
are plots of soil water, sea level pressure, soil temperature, latitude, longitude, and cloud top brightness 
temperature.  
 

RF predicted bias appears to increase at 
the 21-hour lead time as soil water increases and 
soil temperature decreases, finding a consistent 
hot bias under these conditions (Figure 12.a). The 
RF also found a significant relationship between 
soil temperature and cloud top brightness 
temperature (Figure 12.b) for dew point forecasts 
at this lead time, displaying a hot bias under cooler 
soil temperatures with high cloud top brightness 
temperatures (which correlates with clear air/weak 

and shallow cloud cover). The model overpredicts 
dew point in these conditions likely because it 
overestimates near-surface moisture under 
shallow clouds and cold soils that suppress 
evaporation and vertical mixing. Finally, a trend we 
saw from hour 6 dewpoint forecasts, 21-hour 
forecasts continue to show low soil temperature 
regimes struggle in western portions of the domain 
(Figure 12.c), which indicates a consistent 
increase of this bias with increasing lead times. 
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Figure 12.a-c. 2-Dimensional partial dependence plots of soil water and soil temperature (13.a), cloud top 
brightness temperature and soil temperature (13.b), and longitude and soil temperature (13.c)  
 
3.8 Latitude and Longitude as Predictors 
 
 Plotting them individually, latitude and 
longitude variables show intriguing patterns, but 
plotting them together on a 2-D partial 
dependence plot allows us to see how forecast 
model bias varies spatially, granting the ability to 
determine the extent to which geographic location 
plays a role in forecast bias. Higher latitudes 
represent more northern locations, and higher 
longitudes describe more eastern locations, with 
the domain representing the lower 48 Continental 
United States (CONUS). Figures 13.a-d below 
show there is a strong regional dependence in 
RF’s forecasted bias for all lead times and forecast 
cases, with contours being labelled with 
corresponding values of RF forecasted bias. 
Beginning with Figure 13.a, which displays RF 
forecasted bias for temperature at forecast hour 6 
shows the RF is expecting the greatest forecast 
bias in the southwest (approx 247-256 lon, 32 – 36 
N lat) and northeast (approx 267-281 lon, 40-44 N 
lat) showing spatially that the RF is sensitive to 
these geographic locations. Warmer colors 
correspond to areas where forecasts are typically 
more accurate, finding that systematic errors are 
generally smaller there, whereas the cooler colors 
represent greater negative values of RF 
forecasted bias, showing that the forecast model 
consistently underpredicts temperature in these 
locations at the 6-hour lead time.  
 
  As we increase the lead time from hour 6 
to hour 21 for temperature, a shift in RF predicted 
bias (Figure 13.b) is noted. Firstly, the bias 
originally noted in the southwestern portion of the 
domain appears to have levelled out, while the 
northeastern area of interest has increased in RF 
predicted bias, indicating that the forecast model 

continues to struggle with forecasts of 2-m 
temperature in this area with increasing lead 
times. As seen from Figure 7.e, there is a very 
strong dependency of RF predicted forecast bias 
on east-west extent, with a sharp drop off in model 
accuracy as you pass east of longitude 264, which 
corresponds to far eastern portions of Oklahoma, 
Texas, and Kansas, and far western portions of 
Iowa and Minnesota. RF also predicts higher 
forecast bias north of latitude 40 N, which places a 
bullseye for the greatest RF predicted bias in the 
northeastern portion of the domain, where RF 
expects the largest systematic errors. West of 
longitude 264, RF seems to perform consistently, 
finding fewer systematic errors here.  
 
 RF predicted bias for dew point at a 6-
hour lead time (shown in Figure 13.c appears to 
be dominated most in part by longitude, with 
forecast accuracy decreasing with westward 
extent especially west of longitude 260. RF 
predicted bias also slightly increases north of 
latitude 39 N, placing the greatest forecasted dew 
point bias in the northwest CONUS, where the 
dewpoint is consistently overpredicted by the 
forecast model. Western portions of the domain 
represent mountainous and semi-arid terrain, 
where larger dew point biases could occur due to 
complex surface and atmospheric dynamics. 
Contrasted to the east, which is generally flatter 
and more humid, where model biases are more 
predictable or better captured.  
 
 Moving forward in lead time, we see in 
Figure 13.d that the dependencies of RF predicted 
forecast bias on latitude and longitude increased, 
especially the former (north of latitude 39 N). 
Increases in RF predicted bias west of longitude 
260 were modest. Based off this interpretation, it 
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can be concluded that the forecast model is rather 
skillful in predicting dew point temperatures for 
southeastern regions of the domain (includes 
Louisiana, Arkansas, Missouri, and areas directly 
east), with systematic biases being lower in those 
regions at both lead times. RF predicted biases 
become more prevalent with northwestward 
extent, with a bullseye located in the far 

northwestern portion of the domain; predicted dew 
point bias is highest in this region, and the forecast 
model typically overpredicts the dew point 
temperature in its forecast. This result is 
consistent with dew point forecast hour 6, which 
also noted the northwestern portion of the domain 
as a trouble spot.  
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Figures 13.a-d. 2-D partial dependence plots displaying longitude on the x-axis, latitude on the y-axis, and 
how bias is forecast by the RF is displayed spatially on the plot. These plots give a great indication of any 
geographic dependence of forecast bias.  
 
 
 
4. Conclusions 
  

In this study, we applied machine learning 
(ML) postprocessing methods to convection-
allowing ensemble (CAE) forecasts of 2-meter 
temperature and 2-meter dew point using random 
forests (RF). These ensembles, though better than 
deterministic outputs, often still struggle with 
forecasts of these variables. Domain-average bias 
correction was performed, but the purpose of this 
study was to use a more advanced method of bias 
correction and compare its success to the former. 
A secondary goal was to find regional or flow-
dependent biases that may correlate to specific 
predictors for the purpose of future model 
improvements.   

 
Our RF model was trained on a wide 

range of predictors that may potentially play a role 
in model error, with an emphasis on land-
atmosphere interactions in the selection of 
predictors. An extensive test of RF 
hyperparameters was done to determine which set 
was correlated with the best RF model 
performance, which was found to be when max 

depth was 20 and minimum samples per leaf node 
was 10 for all four forecast cases (hour 6 and 21 
forecasts for temperature and dew point). The four 
trained models with this set of hyperparameters 
were then tested for impurity importance and 
analyzed to determine which predictors were most 
impactful in their predictions of forecast error, with 
variables such as soil water, soil temperature, 
latitude, sea level pressure, and cloud top 
brightness temperature being the strongest 
predictors for model bias. Analysis of 1-
dimensional and 2-dimensional partial 
dependence plots of RF forecast error found that 
the forecast model struggles immensely with dry 
soil conditions in short term temperature forecasts 
(with a local maximum in the southwest 
CONUS) and wetter conditions in longer lead 
times. Soil temperature is a strong predictor of 
error in 21-hour temperature forecasts for both 
temperature and dew point, with forecasts often 
underpredicting temperature and overpredicting 
dew points when soil temperatures are cooler. 
Forecasts at this hour are also dependent on sea 
level pressure and soil moisture. Other biases 
were found dependent on wind speed and 
direction in temperature forecasts, with 6-hour 
forecasts struggling with southerly wind regimes 
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and 21-hour temperature forecasts 
underpredicting temperatures in calm conditions. 
Finally, latitude and longitude were found to be 
strong predictors in every forecast case, with the 
RF successfully picking up on systematic model 
errors that depend solely on geographic location 
or an interaction between geographic location and 
meteorological variables.   

 
Overall, RF based postprocessing was 

found to be very successful in reducing model 
RMSE (i.e. increasing model accuracy), with 
substantial quantified improvements from 
uncorrected RMSE to RF bias corrected RMSE 
listed below for each case; a finding that solidifies 
RF postprocessing as a proven method for bias 
correction.   

 
 6-hour Temperature Forecasts: 25.4%  
 21-hour Temperature Forecasts: 38.4%  
 6-hour Dew Point Forecasts: 15.2%   
 21-hour Dew Point Forecasts: 26.6%   

 
A major limitation of this study was such 

that it was to be completed in an accelerated 
timeframe, leaving little room for a more in-depth 
analysis of RF postprocessing. Future work in RF 
bias correction of 2-m temperature and dew point 
could be done to provide further analysis of RF’s 
skill as a bias reduction method and expand upon 
the results of this study. Firstly, using a larger 
dataset could give more tuned interpretations of 
any flow dependent errors. It should be noted 
once again that the dataset used during this study 
was generated from the OU MAP Lab during the 
spring 2022 HWT experiment, which included 
forecasts for much of the month of May and early 
June. Perhaps conducting a similar study during a 
different time of the year, such as a collection of 
dates in the wintertime, could have differing 
outcomes, flow-dependencies, regional biases, or 
strong predictors of error. Using a wider array of 
predictors could also be done to give the RF more 
to work with to improve RF predictive skill. This 
would then enable the connection of more 
potential error relationships such as ones 
discussed in this paper. More connections to 
latitude and longitude could also be done to 
determine if certain variables struggle based upon 
geographic location. In this study, RF was only 
verified at 6- and 21-hour lead times, but future 
work could include more forecast times in this 
analysis, even including forecasts beyond 21 
hours. Finally, more extensive hyperparameter 
tuning could be conducted to determine which set 
provides the best overall performance. This could 

also include playing with the total number of trees 
in the forest as well, which was not done in this 
study.   
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