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ABSTRACT

Tornado warnings issued by meteorologists rely on radar and environmental data to provide life-saving in-
formation, but uncertainties can result in shorter lead times and occasional false alarms. Hence, this study
evaluates the performance of tornado warnings issued by the National Weather Service in 2018 using proba-
bility of detection, false alarm ratio, success ratio, bias, and critical success index. Both radar data and values
from a machine learning-based tornado probability algorithm (TORP) are analyzed for each tornado warn-
ing before or near the warning to identify factors contributing to accurate warnings or false alarms. TORP
detections are based on a 0.006 s! azimuthal shear threshold, which uses 0.5° tilt radar data to display a tor-
nado probability for forecasters to use. Thresholds for TORP, rotational velocity, and azimuthal shear were
created to provide forecasters with recommendations to aid in the decision-making process. Additionally,
population density was examined as a potential factor affecting warning performance, where the success ratio
was generally low for sparsely populated areas and increased for densely populated areas. Together, this work
contributes to enhancing the accuracy and effectiveness of future warning systems and operational forecasting.

1. Introduction

Tornado warnings issued by the National Weather
Service (NWS) are well known to the public, provid-
ing life-saving information if rotation is detected by
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Based on v4.3.2 of the AMS IXTEX template

Weather Surveillance Radar-1988 Doppler radars (WSR-
88D). NWS meteorologists consider a variety of radar and
environmental variables to aid in their decision-making
process for issuing warnings. These decisions can come
with uncertainty, leading to shorter lead times and false
alarms due to various external factors.

NWS forecasters are concerned for the well-being of the
public (Bostrom et al. 2016); (Brooks and Doswell 2002)
and also carry the burden of not wanting to issue a warn-
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ing to avoid false alarms (Doswell 2004). However, being
the backbone of the operational field of meteorology, there
have been improvements over time. With the implementa-
tion of WSR-88D radars in 1986, the probability of detec-
tion (POD) increased from 0.25 to nearly 0.70 in the early
2000s. POD has started to remain steady, but then started
to decrease in the mid to late 2010s (Brooks and Correia
2018). Various scientists in the field have researched this
decrease in POD in the mid to late 2010s, and there are
multiple conclusions about this decrease. One is that large
reductions in the false alarm ratio (FAR) correlate with
large reductions in POD (Brooks 2004). Another possible
cause of this decrease is the changes in the warning sys-
tem, one with different thresholds to issue tornado warn-
ings, and the duration of the warning was reduced from 45
to 30 minutes (Brooks and Correia 2018).

These changes to the warning protocol highlight the
critical decisions that NWS forecasters must make, of-
ten under time pressure, as they weigh radar data, exter-
nal cues, and societal impacts to issue lifesaving warn-
ings. Forecasters are often forced to make split-second
decisions with compromised information, whether that is
distance from radar or combination of sidelobes. How-
ever, the influence of population density and tornado prob-
abilities on the warning decision-making process remains
underexplored.

The primary goal of this study is to explore the
relationship between various factors and tornado false
alarms, with a focus on radar characteristics and tornado
probabilities associated with tornado-warned storms from
2018. This involves investigating population density, radar
range, and meteorological quantities using radar data and
the tornado probability algorithm (TORP). In addition, the
study also assesses whether a radar data threshold should
be established on the basis of this relationship.

2. Literature Review
Radar Data

NWS meteorologists primarily use reliable radar data
and storm reports from real-time observations to issue tor-
nado warnings (Durage et al. 2013). The Warning De-
cision Training Division (WDTD), tasked with tornado
warning training for NWS forecasters, has compiled its
findings to create warning recommendations to get quanti-
tative estimates on tornado probabilities, and most of these
recommendations were based on work done by (Gibbs
2016) and (Thompson and Coauthors 2017). Forecast-
ers can have different thresholds and warning philosophies
(Karstens and Coauthors 2018), so having research pro-
vided with data for radar thresholds can help decrease FAR
and increase POD. (Bentley et al. 2021) showed this by
creating thresholds for 0.5 elevation scan peak rotational
velocity (referred to as Vio) and significant tornado pa-
rameter (STP). They found that creating Vio; > 30 kts and

STP > 0 as a threshold for a tornado warning would have
led to more warnings issued and fewer missed events as-
sociated with POD = 0.68 and FAR = 0.63, which are im-
provements from the 2016—18 database.

Beyond thresholds, all tornado events are different and
will continue to pose challenges to NWS meteorologists
when issuing warnings. Since the first radar observation
from the Weather Surveillance Radar network (WSR-57)
in the 1950s (Stout and Huff 1953), radar knowledge of
severe weather has evolved, and how this knowledge can
be useful for decision-making in issuing warnings. Early
signs of this knowledge came from distinguishing fea-
tures of a tornadic storm, including reflectivity (Zg), hook
echo signature, radial velocity (V,), tornadic vortex signa-
ture (TVS; (Chisholm 1973; Fujita 1973; Burgess et al.
1975; Brown et al. 1978; Markowski 2002; Brown and
Wood 2012)). With the new addition of WSR-88D radars,
upgrades have been made to these radars, including the
implementation of enhanced resolution for data ((Brown
et al. 2002, 2005; Torres and Curtis 2007)) and dual-
polarization ((Istok and Coauthors 2009; Saxion and Ice
2012)). With these upgrades and advancements in Doppler
radar, (Ryzhkov et al. 2005) developed the tornadic debris
signature (TDS), characterizing an area of low correlation
coefficient (pyy,) and differential reflectivity (Zpg) affili-
ated with a TVS.

TORP Algorithm

As the previous discussion shows, today’s NWS fore-
casters synthesize an abundance of radar data in real-time,
and investigating these products can become a distraction
to the forecaster trying to issue a warning (Boustead and
Mayes 2014). To address this issue, TORP was devel-
oped to synthesize various radar data variables to enhance
confidence in warning decisions (Sandmal and Coauthors
2023). TORP identifies objects using radar data from the
0.5° tilt, applying a 0.006 s~ azimuthal shear (AzShear)
threshold. AzShear, a derivative of velocity along the
radar beam, is derived using linear least squares and quan-
tifies rotation. It then extracts radar data from the center
of the object’s AzShear maximum to calculate and dis-
play the tornado probability, aiding the tornado warning
decision-making process (Sandmeal and Coauthors 2023).

External Factors

Even with algorithmic support for tornado warning
decision-making, external factors still play a critical role
in shaping how storms are assessed and whether warn-
ings are issued. Warning severe weather is a mix of art
and science, where forecasters assemble data provided to
them via technology (Daipha 2015). But, even with the ad-
vanced technology we have today, it still cannot predict the
weather perfectly (Hoffman et al. 2017). (Kim et al. 2022)
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showed that meteorologists make decisions from meteo-
rological factors, but also from personal factors. Forecast-
ers’ personal factors can include a variety of thresholds
that they perceive as good for tornado warning of a storm,
which vary from forecaster to forecaster. Forecasters had
a significant dependency on the radar velocity couplet in
decision-making. In addition, storm reports from storm
chasers can also influence decision-making, depending on
whether the forecaster believes it is considerable (Kim
et al. 2022). Forecasters can also make decisions on a
storm-by-storm basis. Forecasters are less likely to warn
the first tornado of each storm, leading to a shorter lead
time than the subsequent tornadoes for the same storm.
In addition, storms that produce only one tornado have a
POD = 0.568 with a lead time of 15 min, making them
poorly warned (Chamberlain et al. 2023). Watches pro-
duced by the Storm Prediction Center (SPC) are in coordi-
nation with local NWS Weather Forecast Offices (WFOs)
that can be Severe, Tornado, or Particularly Dangerous
Situation (PDS). Operational warning decisions are some-
times guided by upstream products from the SPC. The sep-
aration between watch types is clear across all types, PDS
having the highest POD and Success Ratio (SR), while no
watch has the lowest POD and SR (Krocak and Brooks
2021).

The distance from a WSR-88D radar significantly im-
pacts the likelihood of a tornado warning being issued.
Tornadoes occurring more than 100 km from the radar
are less likely to be warned. Even when tornadoes move
into densely populated areas but remain far from radar, the
warning failure rate remains high, about 35%. This sug-
gests that tornadoes in sparsely populated regions, espe-
cially those far from radar coverage, are even less likely to
be detected and warned (Brotzge and Erickson 2010).

3. Data & Methods

To examine the relationship between meteorological
and external factors contributing to tornado false alarms,
this study utilizes multiple databases for analysis. Storm
Data from the National Centers for Environmental Infor-
mation (NCEI) was used for tornado warning verification.
Tornado warning data, including polygon shapes, issuance
and expiration times, and warning text, were obtained
from the NWS. This paper uses a database comprising all
2,010 tornado warnings issued by the NWS in 2018. Addi-
tionally, population resolution data were sourced from the
National Aeronautics and Space Administration (NASA)
Socioeconomic Data and Applications Center (SEDAC).
The following results were obtained using this method-
ological framework and provide insight into what influ-
ences forecasters’ decision-making for warning tornadoes.
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a. Population

The SEDAC database includes the area covered by the
warning in kilometers and the population inside the warn-
ing. The population count has three resolutions: 30-
second, 2.5-minute, and 15-minute, with the 30-second
being the highest resolution and the 15-minute being the
lowest resolution. Population Density is calculated as:

30-second resolution

Area Covered by the Warning

. The 30-second resolution will be used as the population
within the warning polygon, since it is the finest resolu-
tion and gives the most accurate estimation of the popula-
tion count. Population Density will be separated into three
percentiles: Bottom 33% (< 7 people/ km?), Middle 33%
(7-26 people/km?), and Top 33% (> 26 people/km?).
There are 688 warnings in the Bottom 33%, 665 in the
Middle 33%, and 677 in the Top 33%.

b. Performance Metrics

Tornado warnings can either verify (tornado occurred
within the warning) or not verify (tornado did not occur
within the warning). To evaluate warning performance, we
will use POD, FAR, SR, bias, and critical success index
(CSI) for verification methods. POD quantifies the frac-
tion of events that were successfully warned of all warn-
ings issued and is defined as:

POD =

H+M

where H is the number of hits (verified warnings) and M
is the number of misses (tornadoes with no warning).

In addition, POD can be categorized into two subsets:
POD/, when the warning is issued before the tornado oc-
curs, and POD;, when a warning is issued after the tornado
occurs but before it ends (Brooks and Correia 2018).

In 2018, there were a total of 428 misses accounted for,
but 325 were used for the population density warning ver-
ification. The other 103 misses did not have population
density recorded, so we were not able to correlate them to
the population density thresholds.

FAR measures the ratio of warnings that were not veri-
fied and is defined as:

F

FAR= ——
H+F

where F is the number of false alarms (warnings were is-
sued, but nothing occurred).

SR measures the ratio of forecasted warnings that were
successfully verified, defined as:

SR=1—-FAR
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Bias reflects whether tornado occurrences were over-
predicted or under-predicted by the forecast. A bias value
greater than 1.0 indicates over-prediction, while a value
less than 1.0 indicates under-prediction. It is defined as:

H+F
H+M

CSI is often referred to as the accuracy score for the
forecast, and measures the hits to the total number of pre-
dictions excluding true negatives (TN). It is defined as:

H
 H+F+M

The base rate, often referred to as the “random fore-
cast”, measures the proportion of observed events relative
to the total number of forecast opportunities. It represents
the success rate a forecaster would achieve by issuing a
“yes” warning for every event. The base rate is defined as:

H+M
H+F+M+TN

Bias =

CSI

Base Rate =

TORP Probability 10% Threshold

597 1099

Forecast Yes
|

19

Forecast No
\
~

T T
Observed Yes Observed No

FI1G. 1. Contingency table for the 10% TORP threshold, showing the
number of hits, false alarms, misses, and true negatives based on this
threshold.

All of our threshold findings used a 2x2 contingency ta-
ble, where a threshold was set and any value at or above
it was considered a warning issued, while anything below
it was not. These contingency tables allowed us to calcu-
late all of the performance metrics mentioned earlier. A
sample contingency table for the 10% TORP threshold is
shown in Fig. 1. A hit occurs when a forecaster issues a
tornado warning (forecast yes) and a tornado occurs (ob-
served yes). A false alarm occurs when a forecaster issues
a tornado warning, but no tornado occurs (observed no).
A miss occurs when a forecaster does not issue a tornado
warning (forecast no) and a tornado does occur (observed
yes). Lastly, a true negative occurs when a forecaster does
not issue a tornado warning and no tornado occurs.

c. TORP

Although TORP was not operationally available to fore-
casters in 2018, it was used in this study to assess detection
thresholds and match warning decisions. NWS warning
polygons were matched with associated TORP detections
(Sandmz! and Coauthors 2023). TORP uses a 0.006 s~/
AzShear threshold to create a detection, and not every
warning had a TORP detection. There is also the possi-
bility of multiple TORP detections within a warning poly-
gon. Within this study period of 2018, 1,722 warnings
were associated with TORP detections near or before the
warning. TORP detections immediately before warning
issuance were given preference to provide a better compar-
ison to what the forecaster had access to before issuing the
warning. In addition, 288 warnings did not have TORP de-
tections due to the rotation being under 0.006 s~! AzShear
threshold (Sandmel and Coauthors 2023) or radar data er-
rors. To connect the closest TORP detection before or near
when the warning was issued, a code was developed to
match warnings and detections using their shared identi-
fiers. Each warning and TORP detection includes a unique
ID consisting of the issuing WFO and the warning order
number. Once matches are made, the closest TORP detec-
tion will be based on the closest time difference between
the timestamp of the TORP detection and the warning. If
multiple detections were found in the same location, the
detection with the highest AzShear value was selected.

4. Results

Notice, the threshold results only use warnings that
had TORP detections since radar data is available for be-
fore or near when the warning was issued. In addition,
these threshold results use the contingency table to create
thresholds from hits, false alarms, misses, and true nega-
tives.

These thresholds are plotted on a performance diagram
where SR is on the x-axis, and as you increase SR, warn-
ings become more precise. POD is on the y-axis, and as
you increase in POD, warnings catch more of the tornado
events that occurred. CSI is a gradient on this diagram,
where as you go to the top right corner, warnings are more
accurate and bias lines are indicated by the dashed lines
plotted diagonally, where above 1 is an indication of over-
prediction, while less than 1 is under-prediction.

A TORP threshold of 10% aligns closely with the base
rate, where the SR is approximately 0.35. As the TORP
threshold increases, SR generally increases while the POD
decreases (Fig. 4). At the 20% threshold, performance is
slightly above the base rate, with a POD near 1.0 due to the
low threshold allowing for nearly all events to be detected.
However, as the threshold increases to 30% and 40%, per-
formance begins to diverge more noticeably from the base
rate line. Specifically, the 30% TORP threshold has a POD
of approximately 0.8 and an SR near 0.4, while the 40%
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FIG. 2. Performance diagram for TORP detection thresholds in 2018. Each blue dot represents a different threshold for TORP, and the blue line
represents TORP’s overall performance in 2018. Base rate is the dashed dotted line to show the bare minimum success ratio for forecasters if every

storm were warned.

in POD significantly compared to the 0.010 s~! threshold,
but the SR increases. As the AzShear threshold increases,

threshold further increases SR beyond 0.4 but sees a de-
SR increases, and POD decreases (Fig. 4).

crease in POD to around 0.6. Both the 30% and 40%
thresholds fall within the 0.3 Critical Success Index (CSI)
contour. None of the TORP thresholds exceed the 0.3 CSI
contour, but the 30% threshold is closest to the 0.4 con-
tour. When compared to the 2018 overall performance
using TORP detections (shown in Fig.. 4), the 30% and
40% thresholds offer improved performance. The overall
TORP performance in 2018 had a POD near 0.5 and SR
around 0.35, both of which are exceeded by the 30% and
40% threshold values (Fig. 4).
The 0.006 s~! AzShear threshold was not plotted in
Fig. 4. The 0.007 s~! and 0.008 s~! AzShear thresholds
are barely ahead of the base rate; the SR of the base rate
is 0.35. As we move towards the 0.009 s~! threshold, the
threshold starts to move away from the base rate. Using
0.010 s~ AzShear threshold, POD is near 0.65 and SR
is above 0.4. A 0.011 s~' AzShear threshold decreases

Viot 1s the gate-to-gate shear between the maximum out-
bound and inbound velocity, where the thresholds are in
knots. Shown in Fig. 4, each V; threshold is ahead of the
base rate, with some thresholds approaching the base rate
as we keep increasing the threshold. Previous research by
Gibbs (2016) and Thompson (2017) uses Vo as a thresh-
old for 30 kts and STP > 0. Looking at warnings in 2018,
when TORP had a detection before or near the warning,
the 30kts threshold has a POD of 0.7, and SR is near 0.4,
but not a huge difference between the base rate and the
threshold (Fig. 4). As shown in Figs. 1 and 4, increasing
the threshold for the radar variable results in a decrease in
POD and an increase in SR. However, in Fig. 4, for Vo
thresholds, the values begin to curve back toward the base
rate. The 40 kts and 45 kts Vi thresholds are decreasing
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FI1G. 3. Scatterplot for Overall NWS Performance from 2012 - 2024, including 2018 Overall Performance only using TORP detections, where SR
is on the x-axis and POD is on the y-axis.

in POD, but also decreasing SR as well. POD for 40 kts is
near 0.3, and SR is near 0.4. For 45 kts, POD is near 0.2
and SR is near 0.4 as well.

Each population density percentile subset includes val-
ues for both POD; and POD,, as defined in the Meth-
ods section. The Bottom 33% has the lowest POD values
among all subsets, with POD; near 0.6 and POD; near 0.8
(Fig. 4). The Middle 33% shows the highest POD val-
ues, with POD; approaching 0.8 and POD, near 0.9. In
contrast, the Top 33% has the highest SR, with values ap-
proaching 0.4. In terms of CSI contours, the Top 33% falls
within the 0.3 CSI contour, while both the Middle and Bot-
tom 33% percentiles are within the 0.2 CSI contour. When
compared to the bias reference line, all percentiles lie near
or above a bias of 2.0.

5. Discussion

Warnings inherently involve societal factors that can
determine people’s decision-making and interpretation of
information (Schumacher et al. 2010). These same fac-
tors may also influence forecaster behavior. Addition-
ally, weak tornadoes in rural areas often go undetected or
are much more difficult to confirm (Brotzge and Erickson
2010). Forecasters may be influenced by second opinions,

such as a reliable report from a storm spotter or input from
another forecaster, especially when the decision is diffi-
cult. These inputs can prompt the issuance of a warning
(Kim et al. 2022).

Even though false alarms likely do not lead to mistrust
in the NWS (Ripberger et al. 2015), warnings still impact
many and have lasting effects on communities. Warnings
are a complex system that involves prediction, detection,
decision, dissemination, and response. The effectiveness
of the warning depends on these factors, as it creates a
standard of its capability to alert people affected. In an era
of improved technology, investments should be strategi-
cally focused on creating highly efficient tornado warnings
(Brotzge and Donner 2013). This research tends to look
at other possible factors in the warning decision-making
that are unexplored or what previous research was looking
ahead to.

a. Main Findings

Using TORP between 30% and 40% seems to be a
good threshold for forecasters’ decision-making when
compared to the 2018 overall performance with TORP in
Fig. 4. The 30% and 40% TORP thresholds are approach-
ing the 0.4 CSI contour, indicating improved performance
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AzShear Performance Diagram
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FIG. 4. Performance diagram for AzShear detection thresholds in 2018. Each orange dot represents a different threshold for AzShear, and the
orange line represents AzShear threshold overall performance in 2018.

and greater forecast skill. In addition, while comparing
to overall performance when only using TORP detections
(Fig. 4), the TORP 30-40% performance is better. Even
though the frequency bias will be twice as much as a tor-
nado occurring, forecasters are still validating a miss as
costly (Fig. 4). 10% shows no use since it is on the base
rate, and 20% is extremely near it, but there is an expo-
nential increase for SR as you increase the threshold for
TORP, and whether to warn based on those thresholds.
TORP is based on a 0.006 s~' AzShear threshold,
where it can only create a detection whenever that thresh-
old is reached, which is why 0.006 s~! is not shown in
Fig. 4. 0.007 s~ ! is on the base rate, showing that a thresh-
old of 0.007 s~ will be worse than a random forecast.
From a forecaster standpoint, a threshold can be made for
a 0.010 s~! AzShear where the POD is around 0.65 and
SR is 0.4, giving forecasters a higher probability of fore-
casting an accurate tornado warning. When comparing it
to the overall performance only using TORP detections

(Fig. 4), 2 0.010 s~! AzShear threshold is more accurate.
An Azshear threshold of 0.011 s~! could also be used due
to the frequency bias being lower and SR being higher, but
POD below 0.6 will become a concern (Fig. 4). As you
keep increasing the thresholds, SR increases, but POD de-
creases due to being very selective and warning less until
there is overwhelming evidence.

V:ot has been used as a threshold for forecasters since its
research by Gibbs (2016) and Thompson (2017), where 30
kts and an STP > 0 should be considered for a warning.
Looking at Fig. 5, 30 kts is in the .3 CSI contour, where
it has a high POD and near a 0.4 SR, showing this thresh-
old should not be changed. Compared to the overall 2018
performance using only TORP detections (Fig. 4), the 30
kt threshold (Fig. 4) shows improved POD and SR. In ad-
dition, the Vi curve goes back near the base rate (Fig. 4),
due to receiving more misses and fewer hits, decreasing
POD and SR.
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FIG. 5. Performance diagram for V;o detection thresholds in 2018. Each purple dot represents a different threshold for V;o, and the purple line
represents Vi threshold overall performance in 2018.

This research also aimed to explore whether popula-
tion density had any effect on tornado warning decision-
making, and as shown in Fig. 4, there is an apparent rela-
tionship. As we increase in population density, FAR de-
creases, making the SR increase. From the Bottom 33%
POD,, we see a substantial POD and SR difference com-
pared to the Middle and Top 33% (Fig. 4). A possible
conclusion to this substantial difference is that there are
fewer reports for the forecaster. Without having that sec-
ond opinion, fewer reports can lead to POD decreasing and
an increase in the FAR. In addition, another possible con-
clusion is that these are mostly farmland areas that affect
fewer people. With it affecting fewer people, forecasters
might just warn of it and worry less about false alarms
since fewer people are being affected by this storm. This
is vice versa for the more densely populated areas, where
forecasters have more reports and care about decreasing
false alarms in more populated areas, which helps SR. The
Middle 33% have a higher POD; and POD; than any of

the percentiles (Fig. 4). This conclusion is still unknown
as to why this is happening, but possibly due to the sam-
ple size. POD; has a lower POD for all of the percentiles
since it is whenever a warning came before the tornado
occurred. POD; has a higher POD due to its definition
of warning of a storm whenever the tornado is in progress
or before it ends, so it is more likely to detect a tornado.
Overall, forecasters think misses are costly relative to false
alarms due to the frequency bias being above or near 2.0
(Fig. 4). Lastly, the base rate could be changing with each
population density threshold, but this limitation will be
discussed later in the paper.

b. Limitations

While this study gives implications on the various fac-
tors discussed in the forecaster’s decision-making, multi-
ple limitations need to be addressed. For instance, TORP
cannot be compared to NWS performance in 2018 due to
the 0.006 s~! AzShear threshold that TORP has to create
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FIG. 6. Performance diagram for population density percentiles in 2018. Each color represents a different 33rd percentile for population density.
The circles are for PODy, and the squares are for POD,.

any detection. Anything below that threshold will not have
a TORP detection due to its weak rotation, where a bias
could occur between the NWS and TORP warning perfor-
mance. Comparing the two will not give any significant
evidence of whether TORP is outperforming the NWS or
vice versa.

Second, the 0.006 s~! AzShear threshold used in TORP
may exclude false alarm cases that warrant further study,
such as those involving tropical cyclone tornadoes, where
false alarms are common. Additionally, if TORP fails to
run or radar data is missing, no radar input is available near
the time of warning issuance.

Third, as discussed previously in the section above, the
base rate for population density cannot be calculated due
to the dataset that was being used did not truly have a
true negative case. Options were available to decide what
could be considered a true negative; for example, severe
thunderstorm (SVR) warnings that did not produce a tor-
nado could be considered a true negative. This would sway

the base rate to an extremely low number due to the large
amount of SVR warnings issued in 2018. But, it can be
done with the NASA SEDAC population database and a
warning polygon to be able to compute population density
to see the count of true negatives.

6. Summary and conclusions

A total of 2,010 tornado warnings issued by the NWS
in 2018 were examined, where 1,722 were used in perfor-
mance metrics for thresholds due to having a TORP de-
tection before or near when the warning was issued and
having radar data associated with them. The rest of the
warnings did not have a TORP detection associated with
them due to not meeting the 0.006 s~! AzShear thresh-
old. Various factors were analyzed to see if there is a rela-
tionship to better understand false alarm cases in tornado
warnings, for example, TORP, AzShear, Vrot, and popu-
lation density. In summary, the most important takeaways
from this study were the following:
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* TORP around 30% - 40% is a good threshold to use
for issuing warnings with POD ranging from 0.6 -
0.8 and SR being above 0.4. In addition, 0.010 g1
AzShear threshold can be made to forecasters as a
recommendation.

* Previous research by (Gibbs 2016) and (Thompson
and Coauthors 2017) has made 30 kts V;; another
recommendation for forecasters, which has been
proven successful within 2018 NWS warnings before
it was operational to forecasters.

* Population density shows a clear relationship with
warning performance, where higher density often
corresponds to better apparent performance. In
sparsely populated areas, fewer reports can lead to
higher FAR, and forecasters may be less concerned
about false alarms due to the smaller number of peo-
ple affected, while vice versa for densely populated
areas.

Future studies should consider other societal factors:
social vulnerability and demographics, which could influ-
ence the decision-making regarding tornado warnings. In
addition, focusing more on cases where false alarms are
the greatest, for example, weaker (EFO-1) tornadoes, or
when a TORP detection did not occur due to the AzShear
threshold. Furthermore, another useful thing that can be
studied is possibly if the population density had different
base rates, and it is possible to calculate the base rate by
finding the true negatives.

With the advancement of technologies like phased-
array radar (PAR), which offers rapid updates, full-volume
scans, forecasters gain increased confidence in making
timely and accurate warning decisions (Heinselman et al.
2015). As such, continued integration of technology and
high-resolution radar data stands to enhance the effective-
ness of tornado warning operations. TORP aims to serve
as a guidance tool for forecasters to enhance warning per-
formance (Sandma! and Coauthors 2023), and although it
was not operational in 2018, its capability to filter and pri-
oritize radar data shows potential in reducing information
overload and supporting more effective decision-making
by forecasters.
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