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ABSTRACT 

Wildfires have historically played an important ecological role, promoting biodiversity through natural 
landscape renewal. However, in recent decades, wildfire activity has become increasingly destructive, posing 
significant threats to ecosystems, infrastructure, and communities. This study investigates changes in fire weather 
conditions, as measured by the Fire Weather Index (FWI), across the contiguous United States from 1981–2020, 
focusing on regional and seasonal trends. Unlike traditional fire risk assessments that rely on coarse-resolution 
atmospheric reanalysis and global climate models, this study utilizes CONUS404, a convection-allowing regional 
climate model output. With its 4 km spatial resolution, COUNS404 is better at capturing localized fire weather 
conditions over complex terrains than these traditional datasets. Analysis across the four U.S. subregions (Pacific, 
Mountain, Central, Eastern) reveals the large-scale spatial variabilities of wildfire risk. In particular, the Pacific zone 
exhibits the highest and most rapidly increasing annual average FWI, indicating greater vulnerability to wildfire. 
Seasonal increases in average monthly FWI were observed during the early and late months of the year, particularly 
in January and November, suggesting a potential extension of the traditional fire season into winter and spring. 
Compared to the FWI derived from ERA5 (at 25 km resolution), CONUS404-based FWI captures more local-scale 
spatial heterogeneity of wildfire risks at finer scale, especially in topographically complex regions such as the 
western US. These findings highlight the need for high-resolution climate data in future wildfire research and risk 
management, particularly as fire seasons grow longer and more intense. 

 

 
1.1. INTRODUCTION 

Wildfire has shaped ecosystems for millennia, 
playing an essential role in maintaining biodiversity and 
ecological balance (Sugihara et al., 2006; Wallace 
Covington, 2000). However, the spatial and temporal 
patterns of wildfires have been increasingly disrupted 
by climatic changes, induced by both natural climate 
variabilities and anthropogenic environmental warming 
(The White House, 2023). For instance, from the 1970s 
to 2010s, the average fire season in the U.S. Pacific 
Northwest region increased fivefold, from 23 days to 
116 days, alongside a fivefold increase in total area 
burned (Williams et al., 2019). In another study by 
Dennison et al. (2014), large wildfire events in this 
region also exhibited a notable increase from 1984 to 
2011. These observations call for a better understanding 
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and projection of wildfire activities and their 
environmental impacts on the regional scale. 

In contrast to being influenced by natural 
climate variability over the past several centuries, like 
La Niña conditions or the Little Ice Age, wildfire 
patterns, in the modern era have been increasingly 
shaped by human influence (Abatzoglou et al., 2019; 
Marlon et al., 2012; Trouet et al., 2010). In the 20th 
century, fire suppression efforts and land-use changes 
contributed to reduced wildfire activity (Marlon et al., 
2012; Trouet et al., 2010). However, recent decades 
have witnessed a renewed escalation in wildfire 
activity. A growing body of research links this trend to 
anthropogenic climate change, particularly increased 
global temperatures and prolonged droughts 
(Abatzoglou et al., 2019; Abatzoglou & Williams, 
2016; Iglesias et al., 2022). This resurgence in wildfire 
activity has serious implications for human and 
ecological health. In California, for example, 
individuals over 65 years of age, those with disabilities, 
and residents with limited access to transportation are 
among the most vulnerable populations (Modaresi Rad 
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et al., 2023). These social groups face greater 
challenges of evacuation during wildfire events 
compared to other communities, as tragically illustrated 
by the 2018 Camp Fire—one of the deadliest wildfires 
in California history, which claimed 85 lives, 80% of 
whom were over 65 years old (Modaresi Rad et al., 
2023). Such statistics highlight  the necessity of both 
short-term forecasting and long-term risk assessment in 
local, community-specific wildfire mitigation strategies.    

Another concern related to recent wildfire 
behavior involves the economic costs associated with 
prevention, suppression, and remediation efforts. The 
National Interagency Coordination Center estimates 
suppression costs alone increased approximately 
~10.5% from 1985 to 2020 (National Interagency Fire 
Center, 2025). Beyond just immediate response 
expenses, the lingering economic burden is also 
significant. A recent study estimates that 
wildfire-related  PM2.5 exposure from 2006 to 2020 
resulted in approximately $160 billion in associated 
mortality costs (Law et al., 2025).  These findings 
highlight not only the threats to human and ecological 
health, but also the escalating financial impacts from 
wildfires. 

A common metric to quantify fire risk is the 
Fire Weather Index (FWI), which integrates 
meteorological information over time to estimate 
regional fire danger on a given day (Van Wagner & 
Pickett, 1985). While effective, the accuracy of FWI 
calculations depends heavily on the quality and 
accuracy of the input meteorological parameters (e.g., 
surface precipitation, temperature, wind, and humidity). 
Traditional datasets such as the ERA5 (a global weather 
reanalysis dataset produced by the European Centre 
Medium-Range Weather Forecasts (ECMWF); 
Hersbach et al., 2020) or global climate models (as 
those in CMIP6), have a spatial resolution of 
25-100km. As a result, they are unable to capture 
fine-scale variability of weather conditions, limiting 
their ability to accurately represent environmental 
factors relevant to wildfire risk. This limitation is 
particularly significant in regions with complex terrain, 
such as mountainous western regions where wildfires 
frequently occur (Higuera et al., 2021). 

To address this limitation, this study employs 
the CONUS404 dataset: a high-resolution regional 
climate dataset produced using the Weather Research 
and Forecasting (WRF) model (Skamarock et al. 2008). 
With a spatial resolution of 4 km, CONUS404 offers a 
detailed, consistent, and fine-scale decades-long 
depiction of climate variability across the contiguous 
United States. Its ability to resolve topographic effects 
in the mountainous west and land-atmospheric 
interactions, and mesoscale atmospheric processes in 

the Middle-to-Eastern US makes it especially 
well-suited for regional wildfire risk assessments. 
The purpose of this study is to investigate how wildfire 
risk has changed in the contiguous U.S. since the 1980s 
under changing climate conditions. We quantify annual 
trends in wildfire risk within four regions and 
investigate the influence of weather conditions on 
observed changes in fire seasonality. Utilizing the 
high-resolution CONUS404 dataset, we assess the 
enhanced accuracy of FWI calculations relative to 
ERA5-based estimates. The next section will detail the 
data and methods used in this investigation. Section 3 
will present the results of this research, followed by a 
discussion and conclusion in sections 4 and 5 
respectively.

 
 
2. DATA & METHODS 

The Fire Weather Index (FWI) system, 
developed by the Canadian Forestry Service, is a 
widely used tool for estimating daily wildfire risk based 
on the previous day’s meteorological conditions 
(Lawson and Armitage, 2008; Van Wagner and Pickett, 
1985). In this study, we apply the FWI system to 
examine how fire weather conditions have changed 
across the contiguous United States from 1981 to 2020. 
By analyzing long-term trends in FWI, we aim to better 
understand how a warming climate may contribute to 
changing wildfire risk, informing historical trends and 
future projections.  

FWI calculations rely on four meteorological 
inputs taken daily at local noon: 2m air temperature 
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(°C), 2m relative humidity (%), 10m wind speed 
(km/h), and 24-hour precipitation accumulation (mm). 
In this study, we obtained these variables from the 
CONUS404 climate model.  

Traditionally, fire weather research has relied 
on global reanalysis datasets such as the ERA5 to 
provide meteorological inputs. However, their coarse 
spatial resolution (10-100km) limits their ability to 
capture the fine-scale topographic and convective 
processes that significantly affect fire behavior (Prein et 
al., 2015; Rasmussen et al., 2023). 

To address the limitations of coarse-resolution 
global datasets, we use the CONUS404 dataset. 
Developed by the U.S. Geological Survey (USGS) and 
National Center for Atmospheric Research (NCAR), 
CONUS404 is a high-resolution, convection permitting 
climate model for the contiguous United States. It was 
generated using the Weather Research and Forecasting 
(WRF) model (Rasmussen et al., 2023), configured 
with a 4 km horizontal grid spacing. The simulation 
spans from October 1979 to September 2021 and 
includes hourly and daily atmospheric and land surface 
variables (Rasmussen et al., 2023). For this study, we 
take the 1981-2020 (inclusive) data for FWI estimation.  

A key advantage of CONUS404 is its ability to 
explicitly resolve convection weather systems, 
including mesoscale convective systems (MCSs), which 
are often poorly represented in coarser global models 
that rely on parameterizations. These improvements 
make it particularly well-suited for fire weather 

analysis, where spatial variability in temperature, 
humidity, wind, and precipitation can substantially alter 
wildfire potential. By using CONUS404, this study 
aims to produce high-resolution, spatially representative 
fire weather trends across the contiguous United States 
over a 40-year period 

The FWI is calculated through a sequential 
process based on daily meteorological inputs. These 
inputs are used to estimate three soil moisture codes, 
each representing a different layer of forest fuel. These 
moisture codes are then used to calculate two fire 
behavior indices, which together determine the FWI 
value. This methodology follows the structure outlined 
by Van Wagner and Pickett (1985). 

Fuel Moisture Codes 

● The Fine Fuel Moisture Code (FFMC) represents 
the moisture content of the uppermost layer of 
surface litter (≤1.2cm depth) and responds the 
quickest to changing weather conditions (±16hr 
time-lag). It incorporates all four weather variables 
and is measured on a scale from 1 to 101, with 
higher values indicating drier fuel. This variable 
plays a significant role in ignition probability and 
extent of spread.  

● The Duff Moisture Code (DMC) represents the 
moisture content in moderately deep (1.2-7cm 
depth) and loosely compacted organic matter. This 
layer has a slower response time (±12-day time-lag) 
and does not include wind speed in its calculation. 
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This variable contributes to fire intensity, with 
higher values signifying increased dryness.  

● The Drought Code (DC) reflects deep (7-18cm 
depth) and compacted organic layers and is used to 
estimate long-term drought conditions, with a 
moisture response time-lag of about 53 days. This 
variable informs fire-prone conditions and 
contributes to fire intensity including the depth of 
the burn and fire suppression potential.  

Fire Behavior Indices  

● The three moisture codes above are used to calculate 
two fire behavior indices: the Initial Spread Index 
(ISI) and Buildup Index (BUI). The ISI combines 
FFMC with wind speed to estimate the potential rate 
of fire spread. It is important to note that this index 
does not take fuel type into account, meaning that 
actual spread rates can differ between fuels with the 
same ISI. The BUI uses DMC and DC to gauge the 
total amount of fuel available for combustion.  

● The FWI is derived from the ISI and BUI, 
producing an index that represents potential fire risk 
under given weather conditions. The standard 
thresholds that determine risk severity are indicated 
in figure 4.  

To assess both national and regional 
variability, we analyze FWI data within four 
subregions: Pacific (Z19), Mountain (Z18), Central 
(Z17), and Eastern (Z16). Figure 5 illustrates these 
regional divisions and their corresponding codes.  

 

3. RESULTS 

To understand how wildfire risk has changed 
over time across the U.S., we analyzed annual trends in 
the FWI from 1981 to 2020. Figure 6 presents the 
average annual FWI across the four U.S. zones. As 
indicated by the trendlines and slope values, the Pacific 
zone (Z19) has experienced the greatest increase in 
FWI during this period, followed by the Mountain 
(Z18), Central (Z17), and Eastern (Z16) zones, 
respectively. This figure also highlights the average 
FWI in each zone, with the Pacific zone consistently 
exhibiting higher FWI levels than other regions. 
Fluctuations in FWI are relatively consistent across the 
four zones, with peaks and dips occurring at similar 
intervals nationwide, reflecting the control by 
large-to-planetary-scale environmental conditions. 
While the Pacific zone exhibited the steepest increase, 
only the Eastern zone showed a statistically significant 
trend (p =   0.0482), with weaker significant trends in 
the central and western zones. 

Figure 7 illustrates the average monthly FWI 
across the four zones for two 20-year periods. The blue 
line (with circles) depicts the mean FWI values from 
1981 to 2000, while the orange line (with squares) 
shows the mean FWI values from 2001 to 2020. The 
figure highlights a noticeable increase in FWI during 
the early and late months of the year, with the most 
substantial increase occurring in November (10.07%) 
and January (13.58%). 

To investigate the drivers behind this observed 
shift, figure 8 demonstrates the relationship between 
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monthly FWI change (shown in figure 7) with the four 
weather variables used in its calculation: temperature, 
 relative humidity, wind, and precipitation. Among 
these, changes in FWI had the strongest correlation 
with the change in precipitation, showing a strong 
negative relationship with an R2 value of 0.836. A 
similarly negative correlation was also found with 
relative humidity, with an R2 value of 0.752. In contrast, 
wind and temperature showed no obvious relationship 
with R2 values of 0.065 and 0.008 respectively. 

To examine the long-term evolution of fire 
weather severity, we analyzed the frequency of annual 
FWI severity levels at a five-year return period from 
1985 to 2020. Figure 9 focuses on three major 
California cities: Los Angeles (Fig. 9a), San Francisco 
(Fig. 9b), and San Diego (Fig. 9c). These urban areas 
were selected for their large populations and historically 
high regional wildfire risk.  

Figure 9a shows the evolution of FWI severity 
levels in Los Angeles. From 1985 to 2000, days 
classified as high, very high, or extreme made up a 
large portion of each year’s FWI distribution. After 
2000, the number of very high and extreme FWI days 

declined, while high FWI days initially increased before 
sharply decreasing between 2015 and 2020. In recent 
years, the number of days with very low, low, and 
moderate FWI has risen, with moderate FWI days 
showing the most pronounced increase.  

Figure 9b presents the frequency of FWI 
severity levels in San Diego. The number of high FWI 
days remained relatively steady from 1985 to 2020, 
with a brief decline around 2000 and a spike in 2005. 
Extreme FWI days were consistently low throughout 
the period, peaking in 2000. However, both extreme 
and very high FWI days have been increasing since 
2010. 

Figure 9c illustrates FWI severity in San 
Francisco. Since 2015, there has been a considerable 
rise in the number of days classified with a high, very 
high, and extreme FWI, with the greatest increase 
occurring in the high category. Despite these variations 
extreme FWI days remain the least frequent. An 
increase in more severe FWI was accompanied by a 
decline in the number of days with a very low, low, and 
moderate FWI, with very low FWI days showing the 
greatest decrease.  
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Across all three cities, Figure 9  highlights that 
Los Angeles has experienced the highest number of 
extreme FWI days. However, each location shows 
evidence of increasing frequency in more severe FWI 
levels between 1985 and 2020.  

Figure 10 illustrates the influence of weather 
data spatial resolutions on FWI estimates, comparing 
the 4 km CONUS404 and 25 km ERA5 datasets on 
October 8th, 2012–one day before the Fern Lake Fire in 
the Rocky Mountains. This location was selected to 
showcase the advantages of the CONUS404 dataset in 
regions with complex terrain. Zoomed-in views of the 
fire site further emphasize how resolution differences 
affect FWI evaluation: ERA5 assigns a relatively low 
FWI at the fire location, whereas CONUS404 captures 
a significantly elevated FWI. 

Figure 11 presents a similar comparison for the 
Chimney Tops 2 Fire, which ignited on November 23rd, 
2016. Displaying the FWI one day prior to ignition, this 
figure emphasizes the contrast in spatial resolution 
between the two datasets. In this case, ERA5 presents a 

higher FWI at the fire location compared to 
CONUS404. Given the complex topography of the 
Smoky Mountains, this region serves as an ideal case 
study for evaluating model performance in wildfire risk 
assessment. 

 

4. DISCUSSION 

The findings from figure 6 show that average 
yearly FWI has increased in all four zones from 1981 to 
2020, with the Pacific zone (Z19) exhibiting the largest 
increase. This zone also recorded the highest overall 
mean FWI, suggesting a persistently elevated fire 
potential relative to the Mountain (Z18), Central (Z17), 
and Eastern (Z16) zones, respectively. Although the 
Eastern zone is the only region with a statistically 
significant trend (p = 0.0482), the absence of statistical 
significance in the remaining zones (p-values between 
0.06 and 0.08) does not necessarily imply the absence 
of trends. Rather, it may reflect greater interannual 

 



7 
 

N A T I O N A L   W E A T H E R   C E N T E R   R E S E A R C H   E X P E R I E N C E   F O R   U N D E R G R A D U A T E S 
 
 

variability or weaker trends within those regions over 
the study period. 

The observed increase in long-term average 
monthly FWI, particularly in January and November, as 
shown in figure 7, suggests that the fire season may be 
extending into the early and late months of the year. In 
contrast, the average FWI during the traditional peak 
fire season (May to September) remains relatively 
stable. However, this does not necessarily indicate a 
lack of intensification in fire weather conditions, as 
monthly means may obscure trends in daily or sub-daily 
extremes. Notably, April exhibits an increase in 
monthly mean FWI severity from low to moderate 
levels, signaling a rise in fire risk during the transition 
period into the peak fire season. 
To evaluate the contribution of each meteorological 
factor and FWI component to the change of FWI 
seasonality, we calculated the correlation between these 
monthly mean FWI change and month 

mean-meteorological factors, as shown in figure 8. 
Variations in precipitation showed to have the strongest 
negative correlation against FWI seasonality changes 
(R2 = 0.836) highlighting the close relationship between 
drought conditions and fire risk. Relative humidity 
variations had the second highest correlation (R2 = 
0.752), suggesting its important role in FWI seasonality 
trends.   

The trends observed in figure 9 highlight a 
shift in fire weather severity across three major 
California cities, with increasing frequencies of high, 
very high, and extreme FWI days. The simultaneous 
decline in days characterized by very low, low, and 
moderate FWI suggests the intensification of fire 
weather conditions over time, with a growing 
proportion of the year characterized by more hazardous 
fire potential in these urban areas.   

Both figures 10 and 11 highlight the enhanced 
spatial detail provided by the high-resolution 
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CONUS404 dataset in topographically complex 
regions. In figure 10, CONUS404 depicts higher FWI 
values in the Rocky Mountains prior to the Fern Lake 
Fire, whereas ERA5 shows a broader area of lower fire 
risk. In figure 11, ERA5 indicates elevated fire danger 
across much of the Smoky Mountains ahead of the 
Chimney Tops 2 Fire, while CONUS404 provides a 
more spatially varied and  localized assessment. 
Although we cannot determine which estimate is more 
accurate without observational validation, these 
examples emphasize the added value of CONUS404’s 
finer spatial resolution for characterizing local fire 
weather conditions. 

Together, these findings underscore the 
importance of using a high-resolution climate model 
output, such as CONUS404, for wildfire risk 
assessment. Its fine scale allows for more localized and 
reliable estimates of FWI, particularly in 
topographically complex regions. Additionally, the 
broader trends observed in figures 6 and 7 highlight 
spatial and seasonal patterns in fire weather conditions. 
The consistently higher FWI in the Pacific zone (Z19), 
as well as the considerable FWI increase in January and 
November, suggest not only regional disparities in 
wildfire risk but also a possible extension of the fire 
season. Figure 8 demonstrates the weather conditions 
responsible for this shift in the fire season, with 
variations in precipitation showing the strongest 
relationship. When combined with the results from the 
FWI severity analysis (Fig. 9), which shows increasing 
frequencies of high and extreme FWI days in major 
California cities, these findings point to a growing and 
more geographically variable fire threat. Together, these 
findings emphasize the need for accurate, fine-scale 
data to support community preparedness, targeted 
resource allocation, and informed policy development 
in the face of evolving wildfire risk.  
 

 

5. CONCLUSIONS 

Using the high-resolution regional climate 
dataset, CONUS404, this study examines historical 
changes in wildfire risk across the contiguous United 
States from 1981 to 2020. The analysis was divided 
across four U.S. subregions – Pacific, Mountain, 
Central, and Eastern – to assess regional trends in 
annual fire risks. Monthly analyses were also conducted 
to investigate decadal shifts in fire seasonality. Lastly, 
fire weather assessments based on the traditional ERA5 
reanalysis were compared with those derived from 
CONUS404, allowing us to illustrate the benefits of 

high-resolution modeling for capturing localized fire 
risk. 

The key findings of this study are as follows: 

● Annual average FWI has increased across the four 
U.S. zones, with the Pacific zone showing the highest 
average and most pronounced rise in FWI from 1981 
to 2020, followed by the Mountain, Central, and 
Eastern zones, respectively. These trends indicate a 
nationwide intensification of fire weather conditions, 
most notably in the Pacific zone. 

● The cold season (November through March) has 
exhibited a greater increase in fire potential compared 
to the warm season. This suggests that fire weather 
conditions are emerging earlier and persisting later in 
the year, signaling an extension of the fire season. 

● Variations in precipitation are shown to have the 
strongest influence on monthly changes in FWI, 
closely followed by relative humidity. Wind and 
temperature variations have a much weaker influence 
on monthly FWI change. 

● Three major cities in California – Los Angeles, San 
Diego, and San Francisco – have seen an increase in 
FWI severity from 1985 to 2020. This reflects the 
larger regional pattern of increasing wildfire risk 
across the Pacific zone. 

● The coarse spatial resolution of the ERA5 limits its 
ability to capture local topographic and convective 
processes that strongly influence fire weather, 
resulting in regionally biased/unreliable assessments 
– either overestimating or underestimating risk. In 
contrast, the higher-resolution CONUS404 dataset is 
more effective for local fire risk assessment due to its 
ability to resolve terrain and convective systems. 

Future studies should explore peak wildfire 
years in greater detail, examining the specific weather 
conditions that contributed to elevated fire risk. It is 
also necessary to investigate the role of ignition 
sources, distinguishing between human-caused and 
naturally occurring fires in relation to fire weather 
conditions. This may provide improved insight into 
how different ignition drivers interact with 
meteorological factors, potentially informing target 
prevention and mitigation strategies. 
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Figure 9. Annual frequency of Fire Weather Index (FWI) severity levels based on a five-year return period 

(1985–2020) for three California cities: (A) Los Angeles, (B) San Diego, and (C) San Francisco. Pie charts 
summarize severity proportions using a fifteen-year return period. 
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Figure 10. Spatial comparison of FWI anomalies on October 8, 2012, from the ERA5 and CONUS404 reanalysis. 

The yellow box indicates the location of the Fern Lake Fire. Black boxes act as extent indicators. 
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Figure 11. Spatial comparison of FWI anomalies on November 22, 2016, from the ERA5 and CONUS404 
reanalysis. The green box indicates the location of the Chimney Tops 2 Fire. Black boxes act as extent indicators. 

 


