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ABSTRACT 
Flash flooding is a dangerous weather hazard that can result in substantial property damage and 

loss of life if the public is not prepared. Because of this, continuous advancements dedicated to extending 
the lead times of flash flood warnings is of great importance. To allow for new progress in this, a new 
precipitation nowcasting scheme which uses data from the MRMS system was tested in the STEPS 
framework. This study focused on nowcasting precipitation with tropical cyclones. Hurricanes Ian (2022) 
and Henri (2021) were chosen as case studies due to their differing precipitation structures. Varying 
parameter value combinations were used to analyze nowcast performance. These parameters include the 
advection tracking threshold, number of ensemble members, and seed value for ensemble perturbations. 
Results indicate that differences in advection tracking threshold caused the most significant changes in 
performance, while differences in number of ensemble members and seed value cause generally 
insignificant performance differences. Performance when the seed value was randomized was also found 
to have a low variability, leading to the conclusion that the particular seed value is generally insignificant 
in nowcast performance. Analysis of both cases revealed that the best performance for each tropical 
cyclone utilized different advection tracking thresholds. This underscores the challenge of finding the right 
parameters to use within the MRMS system. 

 
 

1.1. INTRODUCTION  
 

Tropical cyclones (TCs) contain a wide 
range of hazards when impacting land. One of the 
most deadly hazards associated with them is flash 
flooding (Rappaport 2014), which often occurs 
when a band of intense rain remains over the 
same area for an extended period of time. Flash 
floods are typically characterized by quickly rising, 
fast moving, and debris filled rivers/streams which 
can pose a severe threat to infrastructure, 
property, and life (Creutin et al. 2013). When flash 
floods are imminent or occurring, flash flood 
warnings are issued by the National Weather 
Service for communication of the threat to the 
public. There have been significant advancements 
in lengthening the lead time for these alerts, 
especially between 1990 and 2010, when lead 
times increased from roughly 16 minutes to over 
60 minutes; however, this progress has become 
stagnant over the past decade (Martinaitis et al. 
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2023). A new, innovative way of monitoring flash 
flood potential must be developed to further 
increase lead times to allow the public more time 
to protect themselves and their property. 

A system of accurate nowcasts for 
impactful TC events would be beneficial for 
improving the accuracy of flash flood forecasting 
and allowing for longer lead times for flash flood 
warnings. Nowcasts refer to high resolution (< 5 
km), short-term forecasts of generally two hours or 
less. They typically use existing radar data and 
extrapolate it by following an estimated vector field 
(Prudden et al. 2020). This method is known as 
Lagrangian persistence and is an effective 
nowcasting technique in TCs due to the frequent 
persistence of large scale features over short 
periods of time (Bowler et al. 2006). 
 The Short-Term Ensemble Prediction 
System (STEPS) is a versatile nowcasting 
framework that allows for the simulation of an 
ensemble of future potential precipitation rates  
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(Bowler et al. 2006). The main foundation of 
STEPS is the use of the Lucas Kanade (LK) 
optical flow method, which estimates an advection 
field through the use of image sequences 
(Sharmin and Brad 2012). This is done through 
calculating the movement of different colored 
pixels using a sequence of precipitation rate 
observations. A randomization of small scale 
features and advection uncertainty is then 
implemented, along with a second-order 
autoregressive (AR-2) model, which describes 
uncertainty in precipitation evolution through the 
calculation of AR-2 parameters (Bowler et al.  
2006). The determined uncertainties in advection 
and precipitation evolution are then represented 
through the differences and overall spread of the 
individual ensemble members, while also adding a 
noise component to replicate the unpredictability 
of small-scale features. 
 The purpose of this study is to use STEPS 
to develop the most accurate precipitation nowcast 
for TCs through testing a wide variety of unique 
nowcasting iterations and evaluating their 
statistical performance. Two TC cases with 
differing precipitation structures and intensities 
were analyzed and compared to determine if these 
differences require unique nowcast settings for 
maximum predictability. These analyses will 
contribute to a broader flash flood forecasting 
framework that is in the process of development 
for the purpose of improving flash flood prediction 
and warning lead times. 
 
2. DATA 
  

The Multi-Radar Multi-Sensor (MRMS) 
system developed at the National Severe Storms 
Laboratory (NSSL) provides the radar-derived 
data used in this nowcast study. The MRMS 
system combines existing radar data with 
numerical weather prediction data, atmospheric 
environmental data, satellite data, lightning 
observations, and rain gauge observations (Zhang 

et al. 2016). All of this information allows for a 
wide range of products that are used for the  

observation and forecasting of severe 
weather and precipitation. This study utilizes the 
high spatiotemporal resolution (1-km, 2-min) 
MRMS instantaneous precipitation rates for the 
initiation of STEPS nowcasts and verification. 
These rates were derived from a synthetic dual-
polarization scheme (Ryzhkov et al. 2022; Zhang 
et al. 2020) using mosaicked radar data (Qi and 
Zhang 2017) with an evaporation correction 
scheme (Martinaitis et al. 2018). 
 The cases chosen for this study are 
Hurricane Ian (2022) and Hurricane Henri (2021). 
Table 1 displays the chosen times and coordinate 
boundaries for analysis. Each case reflects 
significant differences in precipitation structure. Ian 
maintained a very organized structure as it 
approached land, characteristic of a strong tropical 
cyclone; however, Henri experienced extratropical 
transition (Jones et al. 2003), which caused it to 
have a more frontal-based precipitation structure 
as it approached land. 
 
3.  METHODOLOGY 
 
 The MRMS instantaneous precipitation 
rates were utilized in the STEPS nowcasting 
scheme through the use of pySTEPS, an open 
source Python package used for running STEPS 
nowcasts and statistically analyzing their 
performance (Pulkkinen et al. 2019). The study 
examines different nowcast outputs by evaluating 
different parameters used to run the STEPS 
scheme (Table 2). The product resolution refers to 
the resolution of the gridded input MRMS rain 
rates. Advection tracking threshold refers to the 
minimum rain rate used in the LK optical flow 
method. Ensemble members refers to the number 
of unique nowcast iterations used to create the 
ensemble mean. The seed refers to a variable that 
produces a unique and constant set of numbers 
which gives a pseudo-randomization of small- 

TABLE. 1. Start and end times with coordinate boundaries for each TC case study. 

 Ian Henri 

Date 28-29 September 2022 22 August 2021 

Start Time (UTC) 1900 1700 

End Time (UTC) 0100 2200 

Northwest Corner  29.5°N, -84.5°W 44.0°N, -76.0°W 

Southeast Corner 24.5°N, -79.5°W 39.0°N, -71.0°W 
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scale features for each ensemble member. Each 
unique combination of these variable values were 
tested and analyzed for Ian and Henri. 
 Each iteration will produce a unique set of 
60 minute rainfall rate simulations at two-minute 
resolution. An ensemble mean rain rate nowcast is 
used as the final output. The performance of each 
variable was examined across all initiation hours 
for both cases. An additional test was 
implemented to test the variability of performance 
statistics when the seed value is randomly 
selected. This was done through setting seed 
equal to “None”, which causes the system to 
randomly choose a seed value between 0 and 
100,000,000. This was done for the Ian case for 
the 2100 and 0000 UTC run times, using a 40 mm 
h-1 advection tracking threshold while changing the 
number of ensemble members. Each identical 
input combination was repeated 10 times for an 
analysis of the differing performance statistic 
values. 

Simulated forecast rainfall rates were 
compared to observational data to produce a 
variety of statistical output. 
 
3.1 Fractions Skill Score 
  
 The fractions skill score (FSS) describes 
the fraction of forecast and observed rainfall rate 
grid cells that surpass a defined threshold rate 
(Roberts and Lean 2008). The FSS can consider a 
neighborhood of grid cells; however, this study 
uses the neighborhood of one grid point, and the 
resulting fractions are binary ones and zeros for 
each grid cell analysis. The mean squared error 
(MSE) between observed and predicted binary 
grids is then calculated, and the FSS is calculated 
through 

                    𝐹𝑆𝑆 =  1 −  
𝑀𝑆𝐸

𝑀𝑆𝐸𝑟𝑒𝑓
,               (1) 

where 𝑀𝑆𝐸𝑟𝑒𝑓 refers to the MSE for a random 

forecast. Scores range from 0 (no skill) to 1 
(perfect forecast), with scores of at least 0.5 

considered to be skillful.  A threshold of 1.0 mm h-1 

was used for FSS calculations, and the FSS at the 
end of the 60-minute forecast period was 
evaluated. 
 
3.2 Area Under ROC Curve 
 
 The relative operating characteristic 
(ROC) curve displays the probability of detection 
of a threshold rain rate compared to a 
corresponding false alarm rate at various 
classification thresholds. The area under the ROC 
curve (AURC) can then be used to determine 
forecast skill (Marzban 2004). Perfect forecasts 
have an area of 1, while random forecasts have an 
area of 0.5. These values were output at the end 
of each 60 minute nowcast, and the evaluated rain 
rate threshold was 0.1 mm h-1. 
 
3.3 Pearson Correlation Coefficient 
  
 The Pearson correlation coefficient (CC) 
displays the degree to which the forecast is related 
to observations. It is given by the equation, 
 

𝑟 =  
∑𝑛

𝑖=1 (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

√∑𝑛
𝑖=1 (𝑥𝑖−𝑥)2∑𝑛

𝑖=1 (𝑦𝑖−𝑦)2
,                 (2)                                                                

where 𝑛 refers to the number of grid points, 𝑥 

refers to observed rain rates, and 𝑦 refers to 

forecasted rain rates. These values range from -1 
(strong negative correlation) to 1 (strong positive 
correlation), while a CC of 0 indicates no 
correlation. CCs were collected for each two-
minute interval across the entire 60-minute 
nowcast period. 
 
3.4 Reliability Diagram 
  
 Reliability diagrams display the observed 
relative frequency of an event versus the forecast 
probability. This was done for every grid point, with 
forecast probabilities being the percentage that a 

TABLE. 2. Case parameters for testing different parameter combinations with the STEPS methodology. 

Case Parameter Parameter Values Tested 

Product Resolution 1-km    

Advection Tracking Threshold 0.5 mm h-1 10 mm h-1 20 mm h-1 40 mm h-1 

Ensemble Members 10 20 30  

Seed 0 24 42  
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rain rate threshold (0.1 mm h-1) was exceeded. 
This will indicate whether precipitation is over-
forecasted (line is below 1:1 line), under-
forecasted (line is above the 1:1 line), or is 
forecasted reliably. Each reliability diagram is valid 
for the end of each 60-minute nowcast. 
 
4. RESULTS 
  
 Subtle differences in nowcast performance 
were observed with changes in number of 
ensemble members and seed value. Fig. 1 
displays differences in averaged 60-minute 
performance statistics with these changes for Ian, 
and Fig. 2 displays the same for Henri. Figs. 3-4 
display the changes in CC for every lead time in 
the simulations for Ian and Henri, respectively. 
The spread between these different parameter 
value choices was observed to be small 
throughout the entire nowcast for both cases, 
though patterns do exist. AURC and FSS values 
increased by slightly more than 0.01 when the 

number of ensemble members was changed from 
10 to 30 in the Ian case, while these spreads were 
lower for Henri. CC ranges were observed to be 
0.036 for Ian and 0.021 for Henri with this same 
ensemble member parameter. Changing the seed 
value revealed a less concrete pattern, though 
similar spreads were observed for both cases. For 
Ian, 24 seed performed best using AURC and 
FSS, and was virtually tied with seed=0 using CC. 
However, seed=0 performed best using all 
performance statistics in the Henri case. 
 Greater overall performance differences 
were observed in response to changes in the 
advection tracking rate for both Ian and Henri for 
all performance statistics (Fig. 5). Greater spreads 
in CC also developed, especially in Ian (Fig. 6). 
Differences between the best and worst CC values 
were 0.181 for Ian, and 0.064 for Henri. These 
results indicate a noteworthy change in the best 
performing advection tracking threshold for each 
case. Figs. 5 and 6 indicate that 40 mm h-1 had the 

FIG. 1. Ian performance differences in response to changes in number of ensemble members (left) and seed value 
(right). Displayed are the AURC (blue), FSS (orange), and CC (green). 

FIG. 2. As in Fig. 1, but for Henri. 
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best performance for Ian, yet it had the worst 
performance for Henri, in which 0.5 mm h-1 

performed best. 
The significance of some of these 

differences were determined through t-tests, 
assuming equal variances and using a 
significance level of ɑ=0.05. Differences between 
CCs in the best (worst) performing advection 
tracking rate in Ian (Henri) and all others were 
found to be strongly significant (Tables 3-4). 
Differences in seed value CCs were mostly 
insignificant, and all differences in number of 

ensemble members were found to be insignificant 
(not shown). 

Differences in ensemble mean output 
along with corresponding reliability diagrams 
demonstrate the substantial changes in output that 
occur when advection tracking threshold values 
are changed (Figs. 7-8). Changing the advection 
tracking threshold from 10 mm h-1 to 40 mm h-1 

increased the AURC by 0.129, the FSS by 0.258, 
and the CC by 0.419. The reliability diagrams also 
indicate a reduction of the over-forecasting of 
precipitation through this parameter value change 

FIG. 3. Ian CC spread between the different number of ensemble members (left) and seed values (right). 

FIG. 4. As in Fig. 3, but for Henri. 
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(Fig. 7). Changing the advection tracking threshold 
from 40 mm h-1 to 0.5 mm h-1 increases the AURC 
by  0.121, the FSS by 0.187, and the CC by 0.187, 
along with some improvement in the forecast 
probabilities (Fig. 8). 

Observed performance when setting seed 
to “None” revealed a generally small amount of 
variability (Figs. 9-11), especially in areas under 
ROC curves and FSSs. The average range of the 
AURC, FSS, and CC values were 0.015, 0.041, 
and 0.074, respectively. Ranges were also 
observed to decrease as the number of ensemble 
members increased, with the notable exception of 
2100 UTC FSS ranges which has the lowest range 
with 10 ensemble members. 

 

5. DISCUSSION 
 
 Results indicate that values for advection 
tracking thresholds played a significant role for 
each unique tropical cyclone being evaluated. 
Based on this study, Ian would need a far higher 
value than Henri. One possible explanation for this 
is that Henri lacked areas with rain rates of at least  
40 mm h-1, so the movement of only a few very 
small portions of the storm would be analyzed to 
generate the complete advection field estimation. 
In contrast, Ian had a much larger area of rain 
rates that exceeded 40 mm h-1, especially around 
the eyewall. The southern portion of Ian was 
largely sheared off after making landfall, which 
would mean the LK method would only catch the  

FIG. 5. Performance differences in response to changes in advection tracking thresholds for Ian (left) and Henri 
(right). 

FIG. 6. CC spread between different advection tracking threshold values in Ian (left) and Henri (right). 
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cyclonic movement of that section of the system 
when generating the advection field. This is the 
likely reason that some nowcasts for Ian had the 
forecast precipitation too far to the west (Fig. 7). 
Only taking into account movement of higher rain 
rates that were concentrated mostly around the 
eyewall likely allowed for a better representation of 
the forward movement of the storm, thus leading 
to results more closely aligned with observations. 

 The number of ensemble members was, 
surprisingly, found to be insignificant to 
performance, though raising this value did 
increase performance slightly in both cases. This 
has major implications for future work with this 
nowcasting scheme, since running 10 ensemble 
members takes far less run time than 30 
members. More case studies need to be analyzed 
for this conclusion to be solidified. The seed value 

TABLE. 3. Ian t-test results for differences in avg CC per advection tracking threshold. 

x1 x1(CC avg) x1(CC var) x2 x2(CC avg) x2(CC var) p 

40 mm h-1 0.556 0.019 0.5 mm h-1 0.451 0.025 0.00014 

40 mm h-1  … … 10 mm h-1 0.375 0.027 <0.00001 

40 mm h-1 … … 20 mm h-1 0.471 0.033 0.00388 

       

TABLE. 4. As in Table 3, but for Henri. 

x1 x1(CC avg) x1(CC var) x2 x2(CC avg) x2(CC var) p 

40 mm h-1 0.453 0.008 0.5 mm h-1 0.517 0.002 0.00001 

40 mm h-1  … … 10 mm h-1 0.503 0.002 0.00053 

40 mm h-1 … … 20 mm h-1 0.511 0.005 0.00027 

       

FIG. 7. Ian 0000 UTC run time ensemble mean output (left) and corresponding reliability diagrams (right) using 20 
ensemble members, seed=42, and 10 mm h-1 advection tracking rate (top) / 40 mm h-1 advection tracking rate 

(bottom). 
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was also found to be insignificant to performance. 
All but one t-test using differences in CC revealed 
no significance between both cases. The 
additional analysis in which seed was set equal to 
“None” strengthened this conclusion that the 
particular seed value chosen is not of critical 
importance. This is valuable information, because 
there is a massive amount of seed value options 
that can be chosen. If more testing continues to 
support this conclusion, much time can be saved 
by focusing efforts elsewhere. 
 More case studies using a variety of 
disturbance types should be analyzed and 
compared to existing results in order to ensure a 
high level of versatility of these nowcasts. The 
testing of more parameter value combinations 
would also be beneficial for a more complete 
analysis of existing and future case studies. For 
example, maybe 30 mm h-1 would have performed 
better than a 40 mm h-1 advection rate for Ian. The 
testing of higher rain rate thresholds for FSS and 
AURC would benefit in determining accuracy in 
predicting the location of potential flash flooding. 
Higher resolution input data would likely be 
beneficial in improving accuracy. The initial plan in 
this study was to run all simulations using 500-m 

resolution input data as well; however, 
programming issues and time constraints 
prevented this. 
 
6. SUMMARY 
 
 The performance of a parameter-based 
STEPS nowcasting method has been evaluated 
using MRMS instantaneous precipitation rates. 
Two TC case studies were analyzed, with 36 
unique nowcasts containing different parameter 
combinations for each initiation run time. 
Performance statistics were averaged between all 
run times for analysis, which led to a number of 
conclusions: 

● The advection tracking threshold was the 
most critical parameter. Changes in this 
value led to the greatest spread in 
performance, and the most significance in 
CC differences. 

● Different advection tracking thresholds were 
necessary for TCs with significantly different 
precipitation field characteristics in order to 
have the best performance. For Henri, the 
0.5 mm h-1 threshold was best, while in Ian, 
the 40 mm h-1 threshold performed the best.  

FIG. 8. Henri 1800 UTC run time ensemble mean output (left) and corresponding reliability diagrams (right) using 
10 ensemble members, seed=0, and 40 mm h-1 advection tracking rate (top) / 0.5 mm h-1 advection tracking rate 

(bottom). 
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● The number of ensemble members and 

FIG. 9. Ian performance variability when seed=None for 10 ensemble members using 2100 UTC (left) and 0000 UTC 
(right) run times. 

 

FIG. 10. As in Fig. 9, but for 20 ensemble members. 

 

FIG. 11. As in Fig. 9, but for 30 ensemble members. 
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seed value were less critical parameters. 
Changes in these values led to lower 
spreads in performance, and little to no 
significance in CC differences. 

 This study has only examined a very small 
portion of the capabilities and tendencies of this 
nowcasting scheme. Much more work must be 
done before it can be implemented operationally 
(see discussion section). If successful, these 
nowcasts will allow for the resumption of progress 
in increasing flash flood warning lead times, which 
will help keep the public safer when these hazards 
occur. 
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