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ABSTRACT

Landfalling tropical cyclones (TCs) often spawn tornadoes, which yield conflicting call-to-actions between
tornado warnings and those issued for other hazards (e.g., flash flooding). There have only been a limited
number of TC case studies examining tornado warning forecast skill within TC environments, often yield-
ing differing results. Hence, this study conducts a climatological analysis of tornado warning skill within
TCs from 2011–2021, using observed TC and tornado data in conjunction with single-radar data quantifying
low-level rotation and convergence. Tornado warning skill was lower for TC tornadoes than values of non-
TC tornadoes cited in prior work. Warning skill was generally insensitive to parameters like distance from
the TC center, time of day, and TC intensity. However, despite the low number of tornadoes far from the
TC center (i.e., ≥600 km), warning issuance was still very high, resulting in poor forecasting performance.
Additionally, tornadoes that occurred after local sunset were forecast with greater skill than had previously
been demonstrated, with tornado detection comparable to daytime rates. Probability of detection was substan-
tially increased with increasing tornado damage rating. To explore forecasting thresholds that could increase
skill, low-level azimuthal (i.e., quantifying low-level rotation) and divergent shear (i.e., quantifying low-level
convergence) were examined which showed that warned tornadic supercells typically had strong values com-
pared to both non-warned tornadic supercells and warned nontornadic supercells. Together, this work provides
a groundwork for potentially improving tornado forecast skill in landfalling TCs.

Based on v4.3.2 of the AMS LATEX template 1
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1. Introduction

Landfalling tropical cyclones (TCs) are frequently ac-
companied by tornadoes (comprising ∼6% of all torna-
does in the US), which complicates emergency prepared-
ness and response efforts for other associated hazards
(e.g., flash flooding; Edwards 2012; Blake and Zelinsky
2018; Stewart and Berg 2019). Some fundamental at-
tributes of these tornadoes are well detailed, specifically
∼93% of TC tornadoes have damage ratings of EF/F0–
1 on the enhanced Fujita (EF) or Fujita (F) scales, as
compared to ∼90% of non-TC tornadoes (Edwards 2010;
Edwards et al. 2012). The majority (88%) of TC torna-
does are generated by supercells (Edwards et al. 2012).
While neither the appearance nor the general dynam-
ics are distinctive from those in the Great Plains region,
these supercells are often low-topped and are character-
ized by shallower updrafts, more compact mesocyclone
diameters, weaker amplitudes, and shorter lifespans (Mc-
Caul and Weisman 1996; Suzuki et al. 2000; Edwards
et al. 2012). Tornado distribution in TCs falls predom-
inantly in the northeast (pole-relative) or right-front (TC
motion-relative) quadrant in the outer rainbands during
local daylight hours (Schultz and Cecil 2009; Edwards
2012). However, a larger concentration of more damaging
tornadoes occurs overnight (McCaul 1991; Schultz and
Cecil 2009; Edwards 2012).

Similar to midlatitude supercellular tornadoes, TC su-
percells are heavily influenced by their specific environ-
ments. As such, operational forecasters use a variety of
environmental indicators to forecast tornado risk. On the
synoptic scale, TCs that encounter ambient westerly winds
tend to experience enhanced vertical wind profiles favor-
able to supercell development, typically yielding larger
numbers of tornadoes that are concentrated on the east-
ern half of the TC (Molinari and Vollaro 2010; Edwards
2012; Schenkel et al. 2020). On the TC scale, convec-
tive available potential energy (CAPE) and vertical wind
shear are favorable for supercell development offshore,
suggesting the TC-associated waterspouts could be com-
mon (Edwards 2012). However, some embedded super-
cells strengthen during landfall as they encounter greater
friction over land compared to the ocean (Gentry 1983;
Baker et al. 2009). Factors supporting inland supercell de-
velopment, including those forming before the landfall of
the TC center, are better studied than those developed over
water (Edwards 2012). Despite their frequent occurrence,
inner-band TC tornadoes and associated discrete super-
cells are less likely to occur inward toward the eyewall of
strong cyclones for multiple reasons. Both the TC winds
and convective-scale vertical wind shear tend to increase
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towards the TC center (Franklin et al. 2003). In conjunc-
tion with this, the convective mode near the storm center
favors non-supercellular structure, with continuous band-
ing and coverage of non-convective rain shields (Edwards
2012). Also, much like with midlatitude supercell forma-
tion, CAPE remains important to pair with helicity for TC
tornadogenesis. While helicity increases towards the TC
center, CAPE typically declines as denser rainbands and
deep-layer cloud cover obscure diurnal heating, limiting
buoyancy (Bogner et al. 2000; Molinari et al. 2012).

Even with all these well-established environmental con-
ditions needed for tornadogenesis, forecasters still en-
counter difficulty accurately predicting TC tornadoes us-
ing techniques honed for non-TC environments. As a re-
sult, warning skill tends to be lower when compared with
forecasting those in the Great Plains (Martinaitis 2017;
Nowotarski et al. 2021). Forecasting practices can vary
from office to office depending on their familiarity with
tornadic storms and TCs, while tornadic and non-tornadic
cells may show similar lightning and radar characteristics
in TCs (McCaul et al. 2004; Schneider and Sharp 2007;
Edwards 2012). To quantify this forecast skill, several dif-
ferent statistics are used, including probability of detection
(POD), false alarm ratio (FAR), and critical success index
(CSI; Brooks 2004; Brooks and Correia Jr. 2018). POD
is generally defined in two ways: 1) the ratio of the num-
ber of forecast tornadoes to the total number of observed
tornadoes (POD1):

POD1 =
a

a+ c
, (1)

where a is number of forecast tornadoes and c is the num-
ber of non-forecast observed tornadoes; or 2) the ratio of
the total percentage of events warned (PEW), which is de-
fined as the mean percentage of a tornado track which is
warned:

PODs =
1
N

N

∑
i=1

PEWi, (2)

where PEWi is the percentage of the event warned for the
ith tornado (Brooks 2004; Brooks and Correia Jr. 2018).
Our study will employ the former of the two metrics for
simplicity purposes as opposed to using a cell-based anal-
ysis (Nowotarski et al. 2021). While probability of detec-
tion could easily be increased by the simple issuance of
more warnings, doing so would increase FAR, which is
defined as the ratio of the number of forecasts without a
confirmed tornado to the total number of forecasts:

FAR =
b

a+b
, (3)

where b is the total number of incorrect forecasts (Brooks
2004). Additionally, CSI can be used as a tuning mea-
sure for forecasters when evaluating whether to scale up
or down warning frequency, though the statistic gives no
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new verification information on its own. CSI can be ex-
pressed as a function of both POD and FAR:

CSI =
1

1
1−FAR + 1

POD −1
=

a
a+b+ c

, (4)

Hence, CSI is sensitive to changes in both parameters
(Brooks 2004; Gerapetritis and Pelissier 2004). Changes
in POD and FAR impact CSI equally only when the mag-
nitude of their respective slopes are equal:∣∣∣∣ ∂CSI

∂POD

∣∣∣∣= ∣∣∣∣ ∂CSI
∂FAR

∣∣∣∣
which results in

POD = 1−FAR. (5)

When POD is greater than 1−FAR, changes in FAR have
a greater influence on CSI than changes in POD, and vice
versa (Gerapetritis and Pelissier 2004).

Because of the ubiquity of these statistics, it is useful
to apply them to TC tornadoes. Indeed, it has been shown
that FAR is higher for TC tornadoes than their Great Plains
counterparts (Martinaitis 2017; Nowotarski et al. 2021).
However, large-sample climatologies of warning statistics
have not been performed with prior work, instead, exam-
ining select hurricane case studies. One notable TC to
have been studied was Hurricane Harvey (2017), which
produced 52 tornadoes over a record seven-day period
spanning from the coast of Texas to Middle Tennessee
(Nowotarski et al. 2021). Both the environmental and
radar analyses performed were cell-based to prevent bias-
ing the sample towards longer-lived cells, while the warn-
ing polygon distribution was subjectively limited to within
800 km of the center of Harvey. Tornadic and nontornadic
cells associated with tornado warnings were differenti-
ated from one another (Nowotarski et al. 2021). Warning
skill and various radar attributes, notably single-radar ro-
tational velocity (Vrot ), were tested against previously es-
tablished forecasting thresholds from Martinaitis (2017).
Indeed, many of the fundamental spatial attributes of Har-
vey tornadoes were similar to those in the historical TC-
TOR database: the majority of tornadoes occurred in the
northeast quadrant within a range of 100–500 km from the
TC center. Temporally, Harvey was notable for its rela-
tive abundance (38.5%) of nighttime tornadoes, as com-
pared to 29.3% in the TCTOR database (Nowotarski et al.
2021; Edwards 2012). The FAR and POD1 for tornadoes
in Harvey were found to be higher (0.84 and 0.64 respec-
tively) than for non-TC tornadoes (0.70 and 0.53 respec-
tively) from the previous five years (2012–16), while the
CSI was found to be lower (0.16 vs 0.24; Brooks and Cor-
reia Jr. 2018; Nowotarski et al. 2021). POD experienced
fluctuations as a function of distance from the TC center,
while FAR steadily increased with increasing distance out-
wards of 200 km from the center of Harvey. Warning skill

decreased notably during the night as a result of a spike in
FAR. Distance from the nearest radar also revealed an in-
verse relationship between forecasting skill and distance.
Analysis of radar data revealed that the Vrot was greater
at all radar tilt angles for tornadic cells than nontornadic
cells. However, Vrot decreased as a function of cell dis-
tance from the nearest radar, most likely leading to the
decrease in forecasting skill with radar distance.

Building upon this prior work, the goal of the present
study is to examine warning skill and radar characteristics
of TC tornadoes for a large sample of TCs from 2011–
2021. Specifically, the parameters of TC intensity, dis-
tance from the TC center, time relative to sunset, and dam-
age rating will be examined in conjunction with warning
skill. The radar-derived attributes azimuthal shear (AzS-
hear; i.e., the azimuthal derivative of radial velocity quan-
tifying rotation) and divergent shear (DivShear; i.e., the ra-
dial derivative of radial velocity quantifying divergence),
which are measures of low-level rotation and divergence
of the parent mesocyclones, respectively, will also be used
to compare between warned tornadoes, missed tornadoes,
and non-tornadic cells that were warned.

2. Data and Methods

a. TC Data

TC track and intensity (i.e., 1-min maximum 10-min
wind speed) data from 2011–2021 are obtained from the
National Hurricane Center HURricane DATa 2nd genera-
tion data (HURDAT2; Landsea and Franklin 2013). Our
analysis uses data from the 43 TCs that each spawned ≥1
tornado during the period of study, defined along 6-hr re-
porting intervals.

b. Tornado Data

The track and damage rating data for 557 tornadoes
from 2011–2021 associated with the 43 TCs listed above
are obtained from the Storm Prediction Center (SPC) TC
Tornado (TCTOR) database (Edwards and Mosier 2022).
The data were subjectively reviewed to confirm the asso-
ciation of the tornado and its parent supercell with the TC.
The TC-relative location of each tornado was computed
using HURDAT2 data. Tornadoes may be under-sampled
because of deficiencies in observations and identifying
damage, which is especially challenging in a landfalling
TC. Hence, this contributes to the higher false alarm ra-
tios in TCs compared to non-TCs (Edwards et al. 2012;
Nowotarski et al. 2021).

c. Nontornadic Data

Locations of strongly rotating cells were subjectively
identified using 0.5◦-tilt reflectivity and radial velocity,
within radar scans containing ≥1 tornadic cell for se-
lected landfalling TCs from 2017–2018 (Sandmæl et al.
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2023). The grid point containing the maximum AzShear
within a 10-km radius of the subjectively identified cell
was assigned as the location for the nontornadic cell loca-
tion within a radar scan. These non-tornadic cells will be
used for comparison with the radar characteristics of cells
where warnings were accurately and inaccurately issued.

d. Warning Data

Warning polygon vertices, centroids, and start and end
times issued by National Weather Service (NWS) forecast
offices as verified by the IEM archive (IEM 2020). Warn-
ings defined as being associated with the TC were those
within 1,100 km of the TC center. This is the distance
at which both false alarm distributions reach a local min-
imum and the approximate greatest distance of tornadoes
from the TC center. Tornado data from the SPC were inter-
polated to one-minute intervals for confirmation of overlap
with individual polygons to identify “hits”. The remain-
ing warnings were considered false alarms and were col-
located with the nontornadic data to aggregate radar statis-
tics.

e. Radar Data

Both the AzShear and DivShear data, representing
low-level mesocyclone rotation and convergence respec-
tively, are computed using a 0.5◦-tilt from the single-
radar Next Generation Weather Radar (NEXRAD) Level
2 data (NOAA National Weather Service Operations Cen-
ter 1991). Data consists of the grid point maximum AzS-
hear and minimum DivShear recorded for both the closest
radar scan to the start of the tornado and for each nontor-
nadic cell (Mahalik et al. 2019). The location within the
radar data of each cell is defined as the maximum AzShear
within a 10-km distance from the tornadic or nontornadic
cell. The maximum AzShear and minimum DivShear are
computed within a 2.5-km distance of the radar-identified
location.

3. Results

a. TC Intensity-and-Distance-Relative Variability

Data consisting of all observed tornadoes (i.e., both TC
and non-TC) in the United States from 2012–2016 showed
a POD of 53.0%, a FAR of 70.0%, and a CSI of 24.0%
(Brooks and Correia Jr. 2018; Nowotarski et al. 2021). The
sample statistics from this study were 62.5%, 87.3%, and
11.8%, which are considerably lower than non-TC cases
(Martinaitis 2017; Nowotarski et al. 2021). A compari-
son of tornado warning skill and distribution stratified by
TC intensity (Fig.1) shows that, regardless of TC inten-
sity, warning skill, as demonstrated by CSI, remains rel-
atively constant and in line with that of the total data, al-
though tropical storms have comparatively slightly lower
skill. This is despite tropical storms generating ∼50% of

FIG. 1: Bar plot of FAR, POD, and CSI of TC tornadoes
from 2011–2021 as stratified by TC intensity category.
The annotation above each bar represents the number of
false alarms or tornadoes in each bin. TD and TS mean
tropical depression and tropical storm while the numbered
categories indicate the Saffir-Simpson intensity category
of the TC.

all TC tornadoes and associated warnings, which supports
previous work showing that most tornadoes occur after
TC landfall and that TCs spend most of their post-landfall
lifespan at tropical storm intensity or weaker (Kaplan and
DeMaria 1995; Schultz and Cecil 2009). The lower sam-
ple size for tornadoes associated with strong hurricanes
may be a result of the greater difficulty confirming tornado
occurrence, particularly near the coastline, during strong
TCs where tornado damage is challenging to distinguish
from the TC (Edwards et al. 2012; Edwards and Mosier
2022).

Analysis of the variability in cyclone-relative tornado
warning skill (Fig. 2) shows only small differences, espe-
cially close to the TC center. Approximately 50% of all
tornadoes and warnings occurred 200–400 km from the
TC center (McCaul 1991; Schultz and Cecil 2009). In the
200–400 km range, POD showed a 0.3% decrease, while
FAR showed a 0.5% increase in comparison, however, CSI
only decreased to 11.4% for tornadoes in this area versus
11.8% for all tornadoes. Overall, for ranges with at least
100 spawned tornadoes (i.e., large sample sizes), POD re-
mained relatively constant, though FAR experienced some
variability. This is in contrast with previous case work on
Harvey (2017), which demonstrated fluctuation in POD as
a function of distance (Nowotarski et al. 2021). In con-
trast to tornadoes near the TC, those tornadoes that re-
main far from the TC center (> 800 km) are not forecast
with nearly as much precision. While only 8 tornadoes
were confirmed at that distance from 2011-2021, 148 false
alarm warnings were issued by WFOs resulting in a FAR
of 96.7% and a CSI of 3.2%.

The variability of tornado warning skill as a function of
distance from the TC center and TC intensity is shown in
Fig. 3. Here, warning skill varies at different distances
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FIG. 2: As in Fig. 1, but stratified by distance from the TC
center (km).

depending on the strength of the respective TC. In Fig.
2, warning skill, as demonstrated by CSI, was highest for
tornadoes 400–600 km away from the TC center. When
broken down by intensity, the same patterns largely hold,
with the notable exception being for those associated with
strong hurricanes. FAR for strong hurricanes is increased
at all distances, often paired with low POD and/or small
sample sizes. Juxtaposing this, FAR remains flat for tor-
nadoes close to the center of TCs, except for strong hur-
ricanes, while POD increases with TC intensity up until
Category 1–2 hurricanes followed by a sharp drop for Cat-
egory 3–5 hurricanes. For ranges beyond 600 km, sam-
ple sizes are too small when subsetting by TC intensity to
make conclusive statements about the forecasting skill of
TC tornadoes.

b. Variability with time of day and damage rating

The variability of warning skill relative to local sunset
is investigated next (Fig. 4). The largest temporal con-
centration of tornadoes occurs within 6–0 hours before lo-
cal sunset. Specifically, 38% of all tornadoes occur here,
yet only 37% of false alarms correspond. POD is also the
highest during this time frame (64.5%), and is higher than
that demonstrated for all tornadoes (62.5%), while FAR
(86.5%) is lower than that demonstrated for all tornadoes
(87.3%). This corresponds to a CSI of 12.6%, a warning
skill that surpasses that of the total TC tornado population.
All of this is in agreement with previous literature and his-
torical records (Edwards 2012).

However, the demonstrated constant warning skill af-
ter local sunset time contradicts previous individual case
studies and historical records which showed or suggested
lower warning skill at night (Nowotarski et al. 2021; Ed-
wards et al. 2012). Indeed, the late-evening warning skill
outperforms the morning warning skill. One possible rea-
son for this discrepancy with historical records is a change
in radar scanning strategy in 2011, Supplemental Adap-
tive Intra-Volume Low-Level scan (SAILS); this process

FIG. 3: Heat map showing (top) FAR, (middle) POD, and
(bottom) CSI as a function of distance from TC center
(km) versus TC intensity category. The annotated num-
bers denote the performance metric value for each cell.
Note the range of the color bar differs among panels.

trades higher elevation angles for low-angle resampling,
which allows for better temporal resolution of character-
istics closer to the ground to compensate for the dirge
of other observational data inherent with night (Chrisman
2011). This is especially critical for TC tornadic supercells
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given their small horizontal and vertical scales, and rapid
temporal evolution (McCaul and Weisman 1996; Edwards
2012).

FIG. 4: As in Fig. 1, but stratified by time relative to sunset
of tornado start.

c. Damage Rating

POD, perhaps intuitively, increases with damage rating
as shown in Fig. 5. EF-0 tornadoes have a POD of 60.3%,
EF-1 tornadoes have a POD of 63.7%, and EF2+ torna-
does have a POD of 75.9%. This is despite the majority of
the strongest tornadoes forming in ranges close to the TC
center (Fig. 6), where POD and CSI are slightly smaller.
In conjunction with this, there is also a smaller number of
weaker tornadoes, relative to EF2+ tornadoes, located near
the TC center (Fig. 6). Some of this may be because con-
firmation of tornadoes that are not directly observed visu-
ally can be confused with damage associated with “miso-
vortices” within the eyewall, which are believed to be gen-
erated inward of the radius of maximum wind where hor-
izontal wind shear is large. These vortices may produce
similar damage to tornadoes but differ in their dynamics
(Wurman and Kosiba 2018).

FIG. 5: Bar plot shows POD for TC tornadoes stratified
by damage rating. The annotated number above each bar
shows the sample size of each bin.

FIG. 6: Bar plot showing the distribution of tornadoes
relative to TC distance from the center (km) stratified by
damage rating on the EF-scale.

d. Radar Analysis

To address this, developing radar tools may be useful
in establishing thresholds that operational forecasters can
use to more easily compensate for observational limita-
tions inherent to dealing with landfalling TCs. Compari-
son of 0.5◦-tilt maximum AzShear data (Fig. 7) shows an
upward shift in the distribution for warned tornadoes when
compared to tornadoes which were not accurately forecast.
Resampling the median of the distributions 10,000 times
with replacement using a bootstrap approach revealed that
the non-tornadic median was not significantly different
from either the hit or missed tornadic medians at the 95%
confidence interval. The median AzShear for warned tor-
nadoes is 1.1 × 10−2 s−1 while the median AzShear for
missed tornadoes is 7.8 × 10−3 s−1, which was also found
to be significantly different at p-value<0.05 according to
a Mood’s median test. In contrast, the median AzShear
values for missed tornadoes and nontornadic cells were
not significantly different, which reinforces the idea that
nontornadic cells are difficult to distinguish from tornadic
cells via radar (McCaul 1991; Devanas et al. 2008). Strong
differences in extreme values for maximum AzShear are
also present. Specifically, the maximum recorded value
for warned tornadoes is 3.8 × 10−2 s−1, while the maxi-
mums for missed and nontornadic cells are 2.6 × 10−2 s−1

and 2.1 × 10−2 s−1, respectively.
Comparison of 0.5◦-tilt minimum DivShear data (Fig.

8) was also examined. The DivShear distribution is shifted
upwards for missed tornadoes when compared to warned
tornadoes, though the shapes of the two distributions are
qualitatively very similar. A 10,000-sample bootstrapping
resampling revealed that the nontornadic median was sig-
nificantly different from the hit tornadic medians, but not
the missed medians at the 95% confidence interval. The
median DivShear for warned tornadoes is -7.6 × 10−3 s−1

and the median DivShear for missed tornadoes is -6.0 ×
10−3 s−1, which was found to be significantly different at



SUMMER 2023 McGavranetal. 7

p-value<0.05 using Mood’s Median Test. Additionally,
the median DivShear for warned tornadoes and nontor-
nadic rotating cells (-6.5 × 10−3 s−1) were found to be
significantly different when tested under like constraints
using a Mood’s Median Test. Unlike with the AzShear
distribution, the extreme values (i.e., the minimums) did
not follow a discernible pattern.

Most previous studies have used Vrot as an evaluation
of rotation, but Vrot sharply degrades as a function of dis-
tance from the radar, whereas AzShear and DivShear ex-
perience more marginal degradation (Mahalik et al. 2019;
Sandmæl et al. 2023). AzShear and Vrot in particular are
closely correlated with one another physically, whereas
DivShear provides new information (Martinaitis 2017).
Hence, AzShear and DivShear may have more value to
forecasters, especially for cells that are far from the radar
(Mahalik et al. 2019; Sandmæl et al. 2023).

FIG. 7: Violin plot with box-and-whiskers plot overlaid
showing 0.5◦-tilt AzShear (s−1) stratified between warned
and missed tornadoes, and subjectively identified rotating
supercells that were warned (i.e., false alarms).

4. Discussion and Summary

This study investigated the variability in forecasting
skill and distribution for tornadoes from 43 TCs from
2011–2021. For this study, forecasting skill was defined
using the statistics of FAR, POD, and CSI. Specifically,
forecasting skill variability as a function of parameters
such as distance from the TC center, time relative to sun-
set, TC intensity, and tornado damage rating was exam-
ined. Radar-derived data, AzShear and DivShear, was also
used to compare tornadic supercells and nontornadic su-
percells, to eventually help establish warning thresholds
for each to improve warning skill.

FIG. 8: As in Fig. 7, but for 0.5◦-tilt DivShear (s−1).

This study shows that warning skill is considerably
worse for TC tornadoes than the total population of tor-
nadoes in the United States during the period of study.
Specifically, though POD is higher, so too is FAR, but to
a greater extent, resulting in a significant decrease in CSI.
Both warning skill and the number of tornadoes substan-
tially decrease at distances ≥600 km from the TC center.
Conversely, the majority of tornadoes and warnings oc-
curred 200–400 km from the TC center, yet this bin was
a local minimum in warning skill. Warning skill, and par-
ticularly FAR, were poor for strong hurricanes; this di-
minished warning skill extended at any distance of torna-
does from the center of strong hurricanes. Warning skill
for nocturnal tornadoes was not as diminished when com-
pared to diurnal tornadoes, which may be attributed to the
adoption of modern radar scanning strategies in the study
period. Overall, POD is relatively continuous throughout
the day. Additionally, as damage rating increased, so did
POD such that strong (EF2+) tornadoes were substantially
more likely to be accurately forecast.

AzShear and DivShear may prove to be useful future
tools when forecasting TC tornadoes. The medians of the
maximum AzShear and minimum DivShear, respectively,
differed significantly between warned and missed torna-
does. For AzShear, the extreme values differed as well,
with accurately warned tornadoes associated with all the
highest values.

While warning skill is worse for TC tornadoes than non-
TC tornadoes forming in the continental United States,
this is often a function of a much higher FAR during
TCs (Martinaitis 2017; Nowotarski et al. 2021). Due to
the myriad of hazards associated with landfalling TCs,
warning sensitivity may be higher than for isolated super-
cells (Edwards 2012). This indicates that new warning
strategies and instrumentation are needed for these more
marginal tornado-spawning embedded cells (e.g., phased
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array radar; Adachi and Mashiko 2020; Morotomi et al.
2020), some of which may be resolved using radar char-
acteristics such as AzShear and DivShear. Tornadoes rated
lower on the EF–scale tend to be harder to accurately fore-
cast, and are an area of interest for future work, especially
differentiating these tornadic cells from nontornadic, yet
strongly rotating cells. Additionally, forecasters may also
consider using lightning observations to aid in forecast-
ing non-TC tornadoes, although recent work has suggested
that marginal value may be added compared to radar data
(Schenkel et al. 2023).
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