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ABSTRACT 

     During the peak of the 2021 & 2022 Severe Weather season in the Midwest, the University of 
Oklahoma (OU) Multiscale Data Assimilation and Predictability (MAP) Laboratory ran two Rapid Refresh 
Forecast System (RRFS)-like systems within the Hazardous Weather Testbed (HWT) in an effort to test 
their accuracy in forecasting the development and evolution of convection. The model, referred to as the 
FV3-LAM consists of 10 ensembles, and was initialized at 00z between the first Monday of May and first 
Monday of June for both 2021 & 2022. This study will analyze the forecasting skill of the model by 
comparing real time observations with model simulations. Several methods are used to quantitatively 
examine accuracy. The standard Neighborhood Method, in which an arbitrary radius is chosen containing 
a set number of grid points, can be used to compare the precipitation and reflectivity within the model to 
observations during the same period. Additionally, a Surrogate Severe Method is also used, which maps 
helicity tracks generated within the model and compares them with observed storm reports. From these 
methods, a Fractions Skill Score (FSS) can be calculated and gives a quantitative measurement of 
forecast accuracy. Promising trends in model accuracy were observed between the two years, with 
average skill scores in 2022 outperforming 2021 across most periods. Results from the standard 
Neighborhood method support improvement in both placement of convection and precipitation. 
Conclusions based on the surrogate severe method were less concrete and require further study. 

 
  

.1. INTRODUCTION  
 
     Over the last decade, there has been 
substantial progress in short-range forecasting of 
convection owing to the invention and 
advancement of numerous convection allowing 
models (CAMs). Unlike global models, CAMs 
typically run at resolutions ≤ 4 km on regional 
domains that allows them to resolve small-scale 
features such as individual storms (e.g., 
Gasperoni et al. 2023). Thus, these models can 
simulate the development and evolution of 
convection over short (usually less than 48 h) time 
scales. This helps forecasters to not only identify 
where storms are most likely to develop, but also 
to attempt to predict storm modes and severe 
hazards associated with them. In fact, the  
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ability of CAMs to provide specific information 
about convective properties such as storm 
initiation, modes, motion, and intensity has been 
clearly demonstrated (e.g., Schwartz et al. 2009; 
Sobash et al. 2011). One such operational CAM 
demonstrative of this progress is the High-
Resolution-Rapid-Refresh model (HRRR; Dowell 
et al. 2022), which became operational at the 
National Center for Environmental Protection 
(NCEP) in 2014. The HRRR is a convection-
allowing implementation of the Advanced 
Research version of the Weather Research and 
Forecasting (WRF-ARW) Model, which features a 
3km grid covering the continental US (CONUS) 
designed for predicting the short-term evolution of 
high-impact convection and precipitating systems 
(Dowell et al. 2022). 
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     Although operational CAMs such as the HRRR 
are a significant milestone for numerical weather 
prediction (NWP), these CAMs have been limited 
to deterministic runs. However, within the last few 
years, increased computational power has allowed 
for ensemble systems such as the High-
Resolution Ensemble Forecast System (HREF 
e.g., Roberts et al. 2020) to become operational. 
The HREF contains 10 ensemble members with 
varying model cores and has been demonstrated 
to be among the best CAM ensemble systems, 
producing incredibly reliable probabilistic forecasts 
(Clark et al. 2019; Roberts et al. 2020).   
     Considering these advancements, CAMs will 
play an increasingly important role in producing 
more detailed, short-range forecasts for predicting 
severe, high-impact hazards including tornadoes, 
strong winds, and large hail. However, it is not 
efficient to continually maintain and upgrade 
multiple modeling systems that each contain 
different dynamical cores, physics schemes, grids, 
etc (e.g., Gasperoni et al. 2023). Further, the 
NOAA vision of a Unified Forecast System (UFS; 
https://ufscommunity.org) is attempting to unify 
Earth modeling systems across a variety of 
disciplines and scales in order to maximize the 
collective efforts of the scientific community to 
facilitate faster scientific progress. The NWP 
model chosen for UFS is the Finite Volume Cubed 
Sphere (FV3; Harris et al. 2013), which was 
recently implemented into the Global Forecast 
System (GFS) in 2019. The Rapid Refresh 
Forecast System (RRFS) is the next generation 
regional ensemble CAM system with the UFS 
framework that is expected to replace the HRRR 
within the next few years with the FV3 Limited 
Area Model (FV3-LAM; Black et al. 2021). 
However, use of the FV3-LAM at convective 
allowing resolutions is still in its infancy, with 
further development and studies required to 
improve the performance of predicting convective 
systems across the US.  
     Considering the need for further research in 
this regard, many research groups have tested 
FV3-based systems within the Hazardous 
Weather Testbed (HWT) Spring Forecasting 
Experiment (SFEs) over the last several years 
during the May-June peak of severe weather 
season. The University of Oklahoma (OU) 
Multiscale Data Assimilation and Predictability 
(MAP) Laboratory ran two RRFS-like systems for 
2021 and 2022 SFEs consisting of 10 ensemble 
members each initialized at 0000 UTC each 
evening for each SFE. The main objective of this 

study is to objectively verify and compare the 
accuracy of these ensemble CAM systems for 10 
select high-impact cases for each year 2021 and 
2022. We hypothesize that the performance of the 
next-day (12-36 h) forecasts from 2022 have 
improved compared to the 2021 system due to 
several upgrades in the ensemble prediction 
system. Finally, the overall performance impact of 
increasing or decreasing the number of ensembles 
for each year will be analyzed. This should provide 
valuable insight into the overall performance of the 
model and help to determine the influence of 
ensemble size on forecast accuracy. Considering 
the plan for the RRFS to become operational as a 
replacement for current CAM systems within the 
coming years, it is important to quantify the skill of 
experimental systems to mark their progress.  
     Measurements of model accuracy across these 
scenarios will be achieved using several well-
established verification techniques. The first is a 
standard neighborhood-based verification for 
measuring precipitation or reflectivity coverage 
within both real-time model simulations and radar-
based observations. As described in Schwartz et 
al. (2010), this method works by spatially 
averaging the number of points within a defined 
circular neighborhood whose forecast exceeds a 
given threshold. This process produces a 
neighborhood probability that can be compared 
between model simulations and observations, 
thereby limiting the influence of high-amplitude 
small-scale displacement errors (referred to as the 
“double-penalty” effect) in the metrics. A variation 
of the standard neighborhood technique will also 
be used to verify model-derived severe weather 
hazards. This surrogate severe method will 
compare model generated updraft helicity, which 
can be upscaled from intense storms into 
surrogate severe reports, to observed wind, hail, 
and tornado severe reports taken over the same 
period. The effectiveness of this method at 
verifying CAM forecast accuracy involving intense 
storms was demonstrated first in Sobash et al. 
(2011, 2016). Finally, Fractions Skill Score (FSS; 
Roberts and Lean 2008) is computed to assess 
model accuracy for different variables.  
     The remainder of this study is organized as 
follows. Section 2 describes the neighborhood 
probabilistic methods for verifying ensemble 
reflectivity, precipitation, and model-derived 
surrogate severe reports as well as the FSS 
metric. Next, section 3 evaluates the performance 
of the OU MAP ensemble systems from 2021 and 
2022 across ten cases using these neighborhood 
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techniques. A comparison between both years will 
also be made using the surrogate severe method 
to wrap up section 3. Finally, a summary and 
discussion of the important findings is given in 
section 4. 

 
2. METHODS 
  
a. OU MAP Ensemble Forecast Configurations 
 
     The basis for these comparisons will be two 
separate ensemble systems run by OU MAP 
within HWT SFEs during both 2021 and 2022. 
During each year an ensemble forecast system 
with 10 members was run each weekday, 
initialized at 0000 UTC. These 3 km forecasts ran 
out to 36 h lead times using the FV3-LAM model 
core. These ensembles were meant to mimic an 
RRFS-like system, including hourly ensemble data 
assimilation of conventional and radar reflectivity 
observations, to test its forecasting capabilities on 
convective scales. Additionally, several changes 
were made to the ensemble system between the 
two years in an attempt to improve accuracy in 
2022. This included general upgrades to the 
model and physics versions, the implementation of 
stochastic physics to increase ensemble spread 
during the free forecast, and modifications to 
parameters controlling data assimilation. 
To systematically compare ensemble forecast 
performance between these two years, 10 high-
impact cases were chosen from each year. These 
cases were chosen based on overall convective 
activity and are listed in Table 1 along with their 
associated Storm Prediction Center (SPC) 1200 
UTC day 1 risk levels and total 24 hour storm 
reports. 
 
TABLE 1: Case dates chosen for 2021 and 2022 along 
with 12 UTC Day 1 SPC outlook risk level and total 
daily severe reports (wind, hail, & tornadoes) received 
for each day.  

Date 2021 SPC Risk Reports Date 2022 SPC Risk Reports 
May 10 Slight 123 May 2 Enhanced 116 
May 11 Marginal 71 May 5 Enhanced 137 
May 14 Slight 66 May 9 Slight 140 
May 17 Moderate 136 May 10 Slight 110 
May 18 Slight 68 May 11 Enhanced 201 
May 24 Slight 53 May 12 Enhanced 565 
May 25 Slight 98 May 17 Enhanced 127 
May 26 Moderate 643 May 18 Slight 158 
May 27 Enhanced 158 May 24 Slight 174 
May 28 Slight 158 May 31 Enhanced 141 

 

b. Standard Neighborhood Verification 
 
     To achieve our goal of measuring model 
performance involving these cases as accurately 
as possible, we will use several verification 
techniques that have been widely adopted for use 
in analyzing CAM accuracy. With the advent of 
models with much finer grid resolutions, it quickly 
became apparent that standard verification 
methods that had worked well for course 
resolution, global models would no longer be 
sufficient. For example, a traditional method of 
measuring model accuracy is to quantify ensemble 
probability (EP) as the ensemble average of binary 
probability (BP) fields for each ensemble member 
(e.g. Schwartz et al. 2010). Typically, a particular 
exceedance threshold (q) is chosen for a given 
field such as accumulated precipitation. This 
process results in a BP of 1 (0) wherever the 
threshold is exceeded (not exceeded). The EP 
field is then computed by averaging at each grid 
point the BP of all ensemble members. This 
methodology works well for traditional verification 
measures (e.g. root mean square error, 
contingency table metrics) for coarser synoptic 
and global forecast systems. However, at the fine 
resolutions of CAMs these traditional metrics 
would result in very high errors for even small 
displacements of storms, known as the “double-
penalty” effect. From a subjective perspective, 
these forecasts may be viewed as useful and 
skillful despite bad metrics, and in some cases an 
intuitively good forecast may have lower scores 
than a subjectively worse forecast (e.g. Roebber 
et al. 2004). A different approach is needed for 
objective verifications of simulated convection in 
CAMs that better correlate with subjective 
evaluations. 
     One commonly used verification approach for 
CAMs that has been introduced is the 
neighborhood method (e.g. Schwartz et al. 2010). 
This approach involves applying a pre-determined 
radius (r) to each grid point within the model to 
create a circular region known as a 
“neighborhood” that is much larger than the 
individual grid point. A neighborhood probability 
(NP) can be calculated as (Schwartz et al. 2010):  
 

𝑁𝑃!" =
1
𝑁#

% 𝐵𝑃!$
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 FIG. 1. Neighborhood ensemble probabili4es (NEPs) for 10 ensembles valid 0100 UTC 27 May 2021 (in color) and 
observed neighborhood probabili4es (black contours). 12km, 30km, & 48km neighborhood radii are used  (a), (b), & 
(c), respec4vely.  

 

where 𝑁𝑃"# for member 𝑘 and central grid point 𝑖 is 
the average of 𝐵𝑃"$ for the 𝑘%& ensemble member 
over each point, 𝑚, within the neighborhood of the 
central grid point, with 𝑁' defining the total number 
of points within the neighborhood. This method 
can then be extended to multiple ensemble 
members such that: 
 

𝑁𝐸𝑃" =
1
𝑛%𝑁𝑃!"

(

!&'

 

Where 𝑁𝐸𝑃# is the neighborhood ensemble 
probability at a grid point 𝑖 when averaged over all 
ensemble members 𝑛.  
     The probabilities generated by this approach 
are dependent on the chosen radius, r, of the 
neighborhood. Choosing proper values for r is 
important as it will ultimately affect the results. 
Figure 1 shows NEP of composite reflectivity 
exceeding 30 dBZ, valid at 0100 UTC 27 May 
2021. Notice that increasing the neighborhood 
radius from 12km at (a) to 48km at (c) acts as a 
spatial smoother, lowering the maximum values 
and reducing gradients. 
     The same neighborhood method can also be 
applied to observations to facilitate objective 
comparisons. The observed NP thus represents 
the proportion of observed events within a given 
neighborhood. By weighing ensemble probabilities 
against observed probabilities applied to a 
particular variable (such as accumulated 
precipitation or reflectivity), we can thereby 
measure the accuracy of the model. 
 
 
 

     A common quantitative metric for measuring 
this accuracy within the neighborhood approach is 
the fractions skill score (FSS; e.g. Roberts and 
Lean 2008, Schwartz et al. 2010). The FSS is 
computed as follows: 

𝐹𝑆𝑆 = 1 −
𝐹𝐵𝑆

𝐹𝐵𝑆)*+,-
 

where FBS is the Fraction Brier Score and 
𝐹𝐵𝑆()*+%	 defines the level of zero skill, and an 
FSS of 1 indicates a perfect forecast. FBS can be 
calculated as follows:  

𝐹𝐵𝑆 =
1
𝑁.
%,𝑁𝑃/(") − 𝑁𝑃2(")-

3
%-

"&'

 

where 𝑁𝑃.(#) and 𝑁𝑃1(#) are the observed and 
forecasted neighborhood probabilities, 
respectively, at the same grid point 𝑖. Thus, FBS 
represents the mean-square-differences of these 
neighborhood probabilities over all grid points in 
the verification domain, 𝑁𝑣. Because FBS 
represents the average difference across all grid 
points, a lower score will indicate better model 
performance. The FBS is compared to 𝐹𝐵𝑆𝑊𝑜𝑟𝑠𝑡, 
which is calculated by:	

𝐹𝐵𝑆4*+,- =
1
𝑁.
%,𝑁𝑃/(")3 + 𝑁𝑃2(")3 -
%-

"&'

 

 
where 𝐹𝐵𝑆2)*+% represents the baseline value for 
0 skill as the worst-case scenario where nonzero 
observed and forecast probabilities have no 
overlapping locations.  
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     By calculating FSS through the neighborhood 
method we can generate and plot quantitative data 
showing model performance over time during each 
case, as well as on a per case basis. FSS can  
also be averaged across all cases for each year, 
thereby allowing a direct comparison of model 
accuracy between separate years. In Fig. 2, we 
can see FSS averaged over the 10-member 
ensemble initialized at 0000 UTC 27 May 2021 
valid for the next-day (12-36 h) forecast timeframe. 
FSS changes with time, indicating varying model 
accuracy between 12z May 27th and 12z May 28th. 
There is consistently higher skill at all forecast 
hours as neighborhood radius increases. 
 

 
FIG. 2. Frac4ons Skill Score (FSS), ploMed as a func4on of 
forecast 4me 12 – 36 h aPer ini4aliza4on for 27 May 
2021 case. Line colors correspond to FSS using 12 (red), 
30 (green), 48 (blue), and 72 km (purple) neighborhood 
radii. 

c. Surrogate severe method 
 
     While the standard neighborhood approach is 
useful when measuring model performance 
involving variables such as simulated reflectivity or 
precipitation, it doesn’t give insight into model-
indicated storm intensity associated with severe 
hazards. Considering one of the main objectives of 
CAMs is to help forecasters identify areas with 
increased severe weather potential such as wind, 
hail, and tornadoes, investigating how they 
perform in this regard is of high priority. To 
accurately verify severe potential in CAMs, a 
“surrogate severe” method was first developed by 
Sobash et al. (2011) and used in several studies 
since (e.g. Sobash et al. 2016; Roberts et al. 
2020; Gasperoni et al. 2023). This technique 
utilizes model-simulated 2-5km updraft helicity 
(UH; Kain et al. 2008) tracks as surrogates for 
severe weather reports. Since UH is a 

measurement of mid-level rotation within 
thunderstorm updrafts, and updraft spin is 
positively correlated with storm intensity, this 
variable can act as a proxy, or surrogate, for 
severe weather within the model. These surrogate 
severe reports can then be compared to observed 
storm reports obtained via the Storm Prediction 
Center (SPC).  
     To create plots that can be verified against 
observations, this method upscales 24-h 
maximum UH onto a coarse 80-km verification 
grid. A threshold is then applied to each 80-km 
grid point to create a binary field of “surrogate 
severe reports” (SSRs). That is, within each 80-km 
grid box, any 3-km model grid point with simulated 
UH exceeding a given threshold labels that 80-km 
box with an SSR of 1. Thus, each 80-km box acts 
as a neighborhood “search radius”, similar to the 
neighborhood maximum method described in 
Schwartz and Sobash (2017). To produce a 
probabilistic representation of the distribution of 
SSRs from the model, a Gaussian filter can be 
further applied as a spatial smoother with a given 
smoothing scale, σ. In this filtering approach, σ 
functions similar to the neighborhood averaging 
radius r in the standard neighborhood method. 
The smoothing of SSR produces a surrogate 
severe probabilistic forecast (SSPF). When 
working with an ensemble system, an SSPF can 
be produced from the SSR field of each ensemble 
member, and the ensemble average of these 
SSPFs produce an ensemble surrogate severe 
probabilistic forecast (E-SSPF) which has been 
shown to lead to better objective scores than 
deterministic SSPF (Sobash et al. 2016). 
     In Fig. 3 we can see an example of an E-SSPF 
compared to observed “practically perfect 
probabilities” generated from observed storm 
reports (OSRs) over the same period. Notice that 
applying a σ to the SSR and OSR fields results in 
probability distributions between 0 and 1 that 
paints the areas at greatest risk of severe weather. 
In this case on the 26 May 2021 there is significant 
overlap in observed probabilities and E-SSPF 
plots in the Great Plains showing model generated 
UH tracks coincided with the general area of storm 
reports. However, storm reports in the Northeast 
were numerous where the model did not generate 
much UH ≥ 200 𝑚3𝑠43, indicating a poor 
performance in that region. Note that practically 
perfect probabilities were produced with σ = 120 
km, representing a “perfect” forecast which mimics 
probabilities of an SPC convective outlook. 
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FIG. 3. Observed “prac4cally perfect probabili4es” plot 
created from observed storm reports (a) and E-SSPF, 
produced by averaging all member SSPFs (b) ploMed on 
an 80 km grid for 26 May 2021. SSPFs were produced 
using UH threshold = 200	𝑚3𝑠43 & σ = 120 km.   

 
 
3. RESULTS 
 
a. Assessing skill of composite reflectivity and 1-h 
precipitation 
 
     To analyze and compare model accuracy, FSS 
was plotted for each year across multiple 
thresholds involving both model simulated 
reflectivity (in dBZ) and 1-h accumulated 
precipitation (in inches). FSS was computed 
across four different neighborhood radii (12km, 
30km, 48km & 72km). In addition to analyzing 
differences among averages between years, 
differences in performance based on ensemble 
size of NEP (3 vs. 10) were also measured. 
     For reflectivity, two thresholds were chosen (30 
and 40 dBZ) with ≥ 30 dBZ generally indicative of 
model generated convection, while ≥ 40 dBZ is 
associated with heavier precipitation typically 
found within convective cores. All of these FSS 
data were plotted as a function of time between 
hours 12 – 36 after initialization, which 
corresponds to 1200 UTC – 1200 UTC the 
following day. Each of the following plots uses the 
aggregate method to combine FSS across the 10 
cases in each year. The typical averaging method 
is produced by averaging FSS scores by case for 
each forecast hour. While this is a straightforward 
method to calculate average FSS scores, it is 
susceptible to sample size issues. Generally, 
cases that have lesser storm coverage can suffer 
from generally lower FSS due to reduced 
predictability coupled with enhanced variability  
 
 

 
FIG. 4.  (a) 10-member FSS of 30-dBZ composite reflec4vity, aggregated over all 10 cases from 2021 (dashed lines) 
and 2022 (solid lines) with four neighborhood radii (12, 30, 48, 72 km). (b) Differences in FSS between years (FSS2022 
– FSS2021). Scores are shown for forecast hours 12-36 in each panel.
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from lower sample sizes. To compensate for this, 
aggregated FSS is used. With this method FBS 
and 𝐹𝐵𝑆𝑊𝑜𝑟𝑠𝑡 values for each hour are instead 
summed up over all 10 cases. The FBS sum and 
𝐹𝐵𝑆𝑊𝑜𝑟𝑠𝑡 sum for each hour are then divided to 
produce an aggregated FSS score. 
     To facilitate a direct comparison between 2021 
and 2022, 10-member aggregate FSS for both 
years were plotted together as a function of time. 
Figure 4 shows 2021 vs 2022 10-member 
aggregate FSS plotted together (a) and their 
calculated differences (b). FSS in 2022 is above 
that of 2021 across most of the period. The 
greatest differences can be seen during the      
convective peak of day 2 where 2022 outperforms 
2021 by a skill score of > 0.08 at all radii for 
several hours. These differences are greater at 
larger radii with the largest differences occurring at 
72 km.    
     The same comparisons were also done with a 
40 dBZ threshold (Fig. 5). Though the overall FSS 
scores are lower, similar trends can be seen in 
these comparisons with 2022 performing better 
than 2021 overall. There remains an improvement 
in skill in 2022 with the greatest improvements 
again occurring during typical periods of greater 
convective activity. Additionally, this improvement 
appears to be weakest during the earlier hours. 
However, the overall improvement in 2022 at this 
higher threshold is less than what is seen at 30 
dBZ.  
     For precipitation, three thresholds (0.1 inch, 
0.25 inch, and 0.5 inch) were analyzed. 
Comparisons were done between 2021 and 2022 
at all of these thresholds. Ensemble sizes (3 vs 
10) were also compared for both 2021 and 2022 at 
all thresholds.  
 

     Figure 6 shows a direct comparison between 
2021 and 2022 at an accumulated 1-h 
precipitation threshold of 0.1 inches (a & b) and 
0.25 inches (c & d). At the lower threshold, 2022 
outperforms 2021 at all hours. However, the 
increase in accuracy is more consistent across 
time than both reflectivity thresholds shown earlier. 
Of all the thresholds tested with the standard 
neighborhood method, the 0.1 inch precipitation 
forecasts showed the greatest improvement 
between the two years. While improvement is also 
seen at the higher threshold of 0.25 inches, it’s 
both less substantial and less consistent than the 
0.1 inch threshold. This indicates that, similar to 
reflectivity, greater improvement seems to have 
occurred at lower thresholds in accumulated 
precipitation as well. 
     Comparisons between 3 and 10 member 
ensemble sizes were also done within each year 
for each precipitation threshold (Fig. 7). As 
expected, in both years and at all thresholds, 10 
ensembles show greater accuracy than 3 
ensembles at almost all time periods. For both 
years the advantage in forecast skill of the larger 
member size also appears to grow as the 
precipitation threshold increases. For example, the 
difference in accuracy between 3 and 10 
ensembles is the greatest at the 0.5 inch threshold 
for both years seen in plots (c and f). However, the 
most interesting observation is the fact that this 
increase in skill difference at larger thresholds is 
far more substantial in 2022 than 2021. This can 
be seen in plots (e and f), which show 0.25 inch 
and 0.5 inch thresholds respectively for 2022. The 
largest increase in skill for both of these thresholds 
occurs between hour 16 and 24.  

 
FIG. 5. As in Fig. 4, but for 40-dBZ composite reflec;vity. 
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FIG. 6. As in Fig. 4, but for 1-h accumulated precipita4on at (a,b) 0.1 inch and (c,d) 0.25 inch thresholds (2.54 mm & 
6.35 mm, respec4vely) 

 

FIG. 7. 3 vs 10 member aggregated FSS differences (10mem – 3mem) at three precipita4on thresholds for both 2021 
(a,b,c) and 2022 (d,e,f) as a func4on of forecast hour (12-36) for four neighborhood radii. Thresholds increase from 
leP to right with (a,d) 0.1 inches, (b,e) 0.25 inches, and (c,f) 0.5 inches (2.54, 6.35, & 12.7 mm, respec4vely). 
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b. Surrogate severe comparisons 
 
     Analysis of FSS differences between SSPF’s 
from 2021 and 2022 is more mixed. Figure 8a 
shows the result of aggregating FSS among all 
cases in 2021 and 2022. FSS scores are plotted 
as a function of both neighborhood smoothing (σ) 
on the x-axis and UH thresholds on the y-axis. The 
highest skill for 2022 shifts toward lower σ values 
(120-140 km) compared to 2021 (160-180 km), 
which is more consistent with the 120-km scale of 
observed practically perfect probabilities. Both 
years peak in skill around a UH threshold of 150 
𝑚2 𝑠−2. The differences between these two 
averages are also shown in Fig. 8b. Aggregated 
FSS from 2021 has a wider range of higher skill at 
greater UH thresholds and σ; however, the 
aggregated skill from 2022 is improved at lower σ 
more consistent with observations and with UH 
thresholds where FSS is maximized (150 𝑚2𝑠−2). 
     Figure 9 shows FSS plotted as a function of the 
same variables, but on a case-by-case basis. 
There is greater case-to-case consistency in FSS 
in 2022, most notably with the locations of FSS 
maxima. Though some 2021 cases have a similar 
location of FSS maxima as 2022 cases, there are 
several cases where the maxima are shifted 
towards higher UH thresholds and/or higher 
smoothing scales. On the other hand, despite less  
 

consistent results, there are a few 2021 cases with 
substantially higher FSS than all 2022 cases (17, 
27, and 28 May 2021).  
 
 
4. DISCUSSION   
 
     FSS data between 2021 and 2022 showed 
some promising results. When comparing 
aggregated FSS across 10 separate cases in 
2021 and 2022, the latter shows superior skill 
across most of the 12-36 h forecast timeframe. 
When focusing on reflectivity with a threshold of 
30 dBZ, aggregate FSS in 2022 is greater 
throughout the 12-36 h period. However, this 
increase in skill was not consistent and appears to 
manifest most strongly between hours 20 and 30 
of day 2. This is likely due to much greater 
forecasting skill in 2022 during periods of greater 
convective coverage, which are typically seen in 
the late afternoon and evenings of most of the 
case days. While 2021 also shows an increase in 
accuracy during more active convective periods, 
this increase is more substantial in 2022. 
Considering the largest skill differences occur 
during periods of widespread convection, this is 
evidence that the 2022 ensembles handled  
 
 

FIG. 8. (a) FSS of 24-h E-SSPF aggregated over all 10 cases from 2021 (leP) and 2022 (right), ploMed as a func4on of 
UH thresholds (y-axis) and σ (x-axis) in two separate graphs for 2021 & 2022. Color contours show FSS ranging 
between values of 0 & 1. (b) Differences in aggregated FSS (2022 – 2021) ploMed as a func4on of UH thresholds (y-
axis) and σ (x-axis). Blue colors show increased FSS for 2022 while red colors show increased FSS for 2021. 
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FIG. 9. FSS ploMed as a func4on of both UH thresholds (y-axis) and σ (x-axis) from each of the 10 cases in both 2021 
(leP) & 2022 (right). Note axis and color bar ranges for individual plots are the same as in Fig. 8a.  

thunderstorm coverage and intensity better than in 
2021. This increase in skill shows up at the 40 
dBZ threshold as well, further supporting this 
hypothesis. Observing these improvements at 
values of 40 dBZ is especially convincing since 
these higher reflectivity values typically show up in 
convective cores, which are more extreme, rare 
events with lower predictability. Thus, a higher skill 
score at these values is indicative of measurable 
improvement in the placement of intense 
convection within the model in relation to 
observations.  
     It should be noted that when averaging FSS by 
cases (not shown), 2021 did slightly outperform 
2022 at 30 and 40 dBZ during hours 12-15. 
However, this advantage disappears when the 
aggregate method is used. The fact that this 
method smooths out these differences could be 
due to sample size issues between cases, with 
early time periods during 2022 cases displaying 
less storm activity. If that is indeed the case, the 
apparent early skill advantage in the average for 
2021 could be more strongly influenced by sample 
size issues rather than actual forecasting skill of 
the model. Across the rest of the 12 – 36 h period, 
2022 held a substantial lead in skill across both 
methods.  
     Another interesting observation is that the 
score differences between 2021 and 2022 are 
greatest among larger radii. Though the reason for 

this is not certain, a potential hypothesis is that the 
updated dynamics and physics in 2022 allowed 
ensembles to improve most during strongly-forced 
scenarios where convection is more widespread. 
However, there was less improvement at smaller 
scale details in the exact placement of convective 
cores. Presumably, larger neighborhoods would 
smooth out these small-scale imperfections and 
put more weight on overall reflectivity coverage 
rather than precise placement of individual storms.  
     When comparing FSS across precipitation 
thresholds similar conclusions can be drawn. At all 
thresholds (0.1 inch, 0.25 inch, 0.5 inch) 2022 
shows superior skill on average. However, the 
advantage is much larger and far more consistent 
at the lightest threshold 0.1 inches, with 
progressively less improvement at 0.25 inches and 
0.5 inches. Lower thresholds such as 0.1 inch 
hourly accumulated precipitation reflect where the 
model produces precipitation in general while 
higher thresholds (0.25 inch and 0.5 inch) would 
correlate more closely with regions of convective 
activity. Reflectivity values chosen also correlate 
more closely with convection, with 30 dBZ 
indicative of broad regions of convection, with 40 
dBZ would is rare outside of convective cores. The 
fact that the 0.1 inch threshold saw a greater 
increase in skill than either the reflectivity 
thresholds or the higher precipitation thresholds is 
evidence that the greatest skill improvement was 
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on synoptic scales due to improvements in the 
model dynamics from 2021 to 2022.   
     While the main objective of this study was to 
compare data between years, an analysis of skill 
differences between ensemble sizes can provide 
further insight into model accuracy. In both 2021 
and 2022 the forecast accuracy was greater 
among 10 ensembles when compared to a smaller 
set of 3 ensembles. This is not surprising 
considering greater ensemble size typically results 
in greater forecasting potential, as the ensemble 
spread better reflects actual forecast uncertainty. 
The more interesting result focuses on how large 
the skill increase is between ensemble sizes in 
2021 vs 2022. While 2021 did show an increase in 
skill with the larger ensemble size, 2022 shows a 
greater skill jump when ensemble members are 
increased from 3 to 10, especially during the next-
day period where new convection is developing 
(16-22 h). When looking at these comparisons 
across all three precipitation thresholds this large 
skill jump is most apparent at the 0.25 inches and 
0.5 inches. The skill increase at 0.5 inches peaks 
at about 0.18 at hour 18, nearly twice as much as 
the increase seen at 0.25 inches. These larger 
skill improvements of greater ensemble sizes in 
2022 could be reflective of improved ensemble 
spread due to the implementation of stochastic 
physics for that year. This was meant to increase 
ensemble spread through time, which should 
increase the diversity and thus enhance the 
advantages of greater ensemble sizes.  
     The results derived from the surrogate severe 
method were less conclusive. When the 
differences of aggregate FSS between the two 
years are plotted, 2021 shows higher skill across a 
greater range of UH thresholds and σ. However, 
2022 does show higher skill at lower UH 
thresholds, (50 to 175 𝑚3𝑠43) and lower σ (≤ 120 
km), near where FSS is maximized. Since 2022 
performs better with less smoothing at lower UH 
values this may be evidence that model generated 
UH tracks within these ranges were generally 
closer to observed storm reports. How well these 
results reflect actual skill differences is uncertain. 
When observing FSS on a case-by-case basis for 
each year it’s apparent that there was greater 
case-to-case variability in 2021, with three cases 
(May 17th, 27th, 28th) producing substantially higher 
FSS. Meanwhile, 2022 shows greater consistency 
in the location and magnitude of the FSS 
maximum. This is evidence that 2022 may have 
given more reliable forecasts and holds an 
advantage from a predictability standpoint, though 

other verification scores would be needed to 
confirm. The variation in scores in 2021 may also 
be an indication that the aggregated scores are 
more strongly influenced by case variability rather 
than purely reflecting model accuracy. Overall, this 
motivates the need for further study involving the 
surrogate severe method before solid conclusions 
can be drawn.  
 
5. CONCLUSIONS 
 
     This study sought to quantify skill differences in 
two RRFS-like ensemble systems run by OU MAP 
Lab in 2021 and 2022. Accuracy was measured 
over 10 separate cases for each year using the 
standard neighborhood method and surrogate 
severe method. Overall, results were promising 
with skill being generally higher in 2022 at several 
reflectivity and precipitation thresholds with the 
largest and most consistent improvement seen at 
lower thresholds. This is evidence for 
improvement in the placement of both convection 
and accumulated precipitation between the two 
years, which demonstrates clear progress in the 
forecasting accuracy of these new ensemble 
systems. However, results from the surrogate 
severe method were mixed with 2022 showing 
greater consistency among cases while 2021 
performed better across a greater range of updraft 
helicity thresholds. Ultimately this enforces the 
need for further research and analysis before 
confident conclusions can be drawn. While 
evidence shows these FV3 ensemble systems are 
indeed improving at convective allowing scales, 
further improvement and testing will likely be 
needed before they are ready to be widely used in 
forecasting.  
     There are plenty of areas involving verification 
of these systems that would benefit from future 
research as well. While skill differences between 
2021 and 2022 were measured in this study, 
further verifications (e.g. reliability, bias) are 
necessary for a more comprehensive 
understanding, including statistical significance 
testing of score differences. Additionally, data 
produced by OU MAP during HWT from 2017-
2019 using the HRRR and NMMB models could 
be used to contextualize the progress seen in 
these next-gen RRFS-like ensemble systems that 
use the FV3-LAM.  
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