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ABSTRACT

The Forecasting a Continuum of Environmental Threats (FACETs) project aims to span the range of con-
vective forecast scales with consistent probabilistic forecasts. To investigate how areal coverage probabilities
behave across a continuum of space and time, this study analyzes simulations from an idealized model in
time and space. Two grids are created. On the first, “events” are randomly placed throughout the grid. On
the second, reports are placed with the same overall coverage but organized in time and space (e.g., lines).
Aggregation is done over time and space scales on the grids to calculate the coverage probability as the size
of the aggregation changes. Dividing the “organized” coverage probability by the “random” yields a u-shaped
curve as a function of aggregation size. The depth and location of the minimum of the u-curve is related to the
organization of the threat and its underlying coverage on the finest grid. Experiments with this framework -
plotting synthetic data and numerical model proxies as organized events - indicate that the location where the
u-curve reaches max depth is between the watch and warning time and space scales. These results show that
forecast interpretation is different between long and short scales, and that organization of storms strongly in-
fluences forecasts in the watch-to-warning space. These results characterize a challenge in creating consistent
probabilities across the spectrum of scales, a goal of FACETs.

1. Introduction

Currently in the United States, the National Weather
Service (NWS) issues convective forecasts ranging from
the warning time and space scale up to Storm Prediction
Center’s (SPC) convective outlook scale. To convey infor-
mation regarding convective hazards between these scales,
the NWS and SPC issue products such as mesoscale dis-
cussions and convective watches. However, a dichotomy
exists between the scales: at a small spatial scale, the
warning scale, the probabilities are binary – either a threat
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is imminent, or it is not – while at a large spatial scale, the
convective outlook scale, percent probabilities are used to
describe the likelihood of a hazard within 25 miles of a
point. Under recommendations to bridge the gaps between
these scales (National Research Council 2006; National
Institute of Standards and Technology 2013), the Fore-
casting a Continuum of Environmental Threats (FACETs)
project proposes a method to shift environmental threat
communication into a paradigm of continuous probabilis-
tic hazard information (Rothfusz et al. 2018). This study
aims to aid forecasters and decision-makers by providing
a framework by which forecast probability is understood
across numerous time and space scales.

Based on v4.3.2 of the AMS LATEX template 1
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Prior research has investigated probabilistic hazards at
a variety of scales. Climatological studies have examined
daily tornado and severe storm probability (Brooks et al.
2003; Doswell et al. 2005, respectively) as a way to un-
derstand SPC’s daily forecast regions of probability. On
smaller time scales, Krocak and Brooks (2018) looked at
hourly tornado probability and determined the time of day
that tornadoes are most likely to occur across the United
States, while Krocak and Brooks (2020) focused on se-
vere weather probabilities between the watch and convec-
tive outlook scale, and found that SPC’s convective out-
looks can confidently be interpreted as valid for a partic-
ular 4 hour period of the day. As forecasts go to smaller
and smaller scales, however, making useful probabilities
becomes challenging. As the spatial and temporal scales
approach zero, the raw probabilities become vanishingly
small. The framework developed herein will investigate
coverage probabilities over a continuum of time and space
and resolve forecast interpretation across that spectrum.

2. Data and Methods

To model coverage probabilities over a continuum of
time and space, we create 3D grids modeling two space
dimensions and one time dimension. Two synthetic ex-
periments are then carried out: on one grid, 100 random
points are plotted (Fig. 1a as a scaled-down example of
a ”random experiment”), while on the other grid, lines
of points are plotted to represent organized storm tracks
(Fig. 1b as a scaled-down example of an ”organized ex-
periment”). In both cases, 100 total points are plotted.
Therefore, the lines of points (organized experiment) are
plotted with equal coverage as the random experiment. In
order to calculate areal coverage, an algorithm is devel-
oped to pass over the grids multiple times and determine
the probabilities associated with the corresponding fore-
cast size. To represent different time and space forecast
scales, we iterate through the grid with different aggrega-
tion sizes (where aggregation size is the volume given by
the space dimensions multiplied by the time dimension).
The areal coverage is calculated as the number of aggre-
gations containing an event divided by the total number
of aggregations. For the random experiment, an analytic
solution exists:

P = 1− (1− p)n (1)

Where P is the areal coverage, p is the probability of suc-
cess, and n is the number of trials. The cases examined
herein do not always reflect the perfect analytic solution
due to the single randomized instance used per trial and
the limited domain, but the probability that we obtain is
sufficiently close enough to the true solution. For the or-
ganized case, however, the probability of an event occur-
ring in one spot strongly influences the probability of an
event occurring in another spot. Therefore, Eq. 1 cannot
be used to describe probabilities in the organized case, and

the areal coverage of the random case is always greater
than or equal to the areal coverage of the organized case.

Figure 1 outlines the aggregation process for a simpli-
fied case in two dimensions. The entire range of time and
space scales is subsequently iterated through to understand
how areal coverage changes spatiotemporally. The spe-
cific ranges examined in this study will be detailed below.

FIG. 1. A 2D example case of the 4x4 aggregation size of the random
(left) and organized (right) scenarios. (A) and (B) outline the location
of the events, (C) and (D) show hits and misses after the aggregating
has run. If an event was in the 4x4 box, the box turns yellow, otherwise
it turns red. Areal coverage is given as the fraction on top of each plot.

In order to further investigate how organization affects
areal coverage, the relationship between areal coverage
and various organization scenarios are examined. To cre-
ate these various organization scenarios, lines of varying
lengths are plotted on a grid. To represent storms with
shorter tracks, more lines (with fewer consecutive points)
are plotted, keeping the overall coverage the same. Last,
the total number of points plotted on the grids is changed
from 100 to 500 in order to analyze how the amount of
coverage affects probability across the different scales.

FIG. 2. Spatial Domain of the NSSL-WRF (black box) and the model
used in study (red box)



SUMMER 2022 Daleetal. 3

FIG. 3. (A) Areal coverage as a function of aggregation size for a 3D Grid. Colors are separated by time aggregation size. Solid lines represent
areal coverages for the random scenario, dashed lines represent areal coverages for the organized scenario. (B) Coverage ratios are calculated as:
organized scenario areal coverage divided by the random scenario areal coverage. Minimum point of all ratios is indicated by a star.

Once the model is investigated for synthetic organi-
zation scenarios, convective-allowing model (CAM) data
is used to simulate a real-world environment. Hourly
maximum updraft helicity (UH; Kain et al. 2008) values
are acquired from the National Severe Storms Laboratory
(NSSL) Weather Research and Forecasting (WRF; Ska-
marock et al. 2008) model (NSSL-WRF) with 1-km hor-
izontal grid spacing. Because of their proven usefulness
as a CAM indicator of mesocyclone formation at low-
levels (Sobash et al. 2016) and mid-levels (Kain et al.
2008; Clark et al. 2012), the 0-3 km and the 2-5 km hourly
maximum UH are examined. UH values found to be at
the climatological 99.85 percentile were used as a thresh-
old (Clark et al. 2019). At each grid point, if the UH
value exceeds the percentile threshold for the respective
UH height, then the point is plotted onto the grid as an
event. The aforementioned aggregation method is then
used to calculate areal coverage across the spatiotempo-
ral scales, thus allowing for interpretation of how storm
organization affects areal coverage on real-world scales.
A few notable differences exist between this “real-world
environment” and the synthetic data experiment. The do-
main size changes (specifics noted below), overall cover-
age is significantly greater in the real-world environment
(∼ 1 event per 2,500 grid points) as opposed to our syn-
thetic environment (∼ 1 event per 100,000 grid points),
and our CAM data is hourly, rather than by minute.

Two case studies are used to examine real-world sce-
narios. Case 1 is the December 10, 2021 severe out-
break that spawned numerous long-track supercells and
swept through the lower Mississippi valley and into the
Ohio river valley through the early evening and into the
night. Case 2 arrived five days later and with a more linear
storm mode on December 15, 2021, when a derecho swept
through the Corn Belt region from the late afternoon into

the late evening. While the two cases were characterized
by different storm modes, they were both significant tor-
nado outbreaks. For these two cases, we use a domain size
of 2048x2048-km over an 18 hour forecast period. The
spatial domain is cut down from that of the NSSL-WRF
to be a perfect square and thus fit in our model. Figure
2 outlines the 2048x2048-km spatial domains used in the
cases, along with the difference between ours and that of
the NSSL-WRF.

3. Results and Discussion

After running the model in the 3D synthetic scenario
with a grid size of 512x512x720 (which can be interpreted
as km x km x min), probabilities are calculated for indi-
vidual time aggregates and graphed as a function of ag-
gregation volume (Fig 3a). At equal aggregation sizes,
the areal coverage for the random case (solid lines) stay
the same across different time aggregations, while they
change for the organized case (dashed lines). Notice that
the larger time aggregations begin up and to the right, as
the larger aggregation shifts right along the x-axis and
shifts up due to a higher areal coverage. When graphed
with logarithmic scales, the random scenario is character-
ized by a straight line until the areal coverages begin to
saturate as the aggregations become too large for the grid.
On an infinitely large grid, saturation would never occur
and the random scenario would remain a straight line.

To understand how the organized scenario differs from
the random, the ratio of their areal coverages is graphed
(Fig 3b). Notice the general shape of the lines is a “u-
curve”; as the aggregation sizes increase, the organized
areal coverages become increasingly less than the random
areal coverages up until the random scenario aggregations
become too large for grid and the areal coverage begins to
saturate, at which point the ratio begins to return to one.
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FIG. 4. The 180-minute time aggregation u-curves from (A) 100 point coverage and (B) 500 point coverage.

The depth of the u-curve and the location where it reaches
its minimum value is related to the organization of the se-
vere threat and its underlying coverage on the finest grid.
If the underlying grid is interpreted as 1-km x 1-km x 1-
min, then the maximum depth of the u-curve exists in a
space between the watch-to-warning scale. This means
that the organization of storms most strongly affects fore-
casts in between the watch-to-warning scale.

The synthetic scenario with different organization sce-
narios (Fig. 4a) reveals that organization affects the shape
of the u-curve. As the storms become more organized
(meaning fewer lines with longer tracks), the depth of the
curve increases and the location of its minimum shifts. In
addition, when coverage is increased from 100 points to
500 points (Fig. 4b), the maximum depth of the u-curve
decreases and the location of its minimum shifts back left.
We hypothesize this is a result of how the synthetic sce-
nario has been created. Since the points plotted on the
organized grid move one space step per time step, higher

Date 0-3 km UH Events 2-5 km UH Events
12-10-21 17844 10056
12-15-21 29939 2410

TABLE 1. A table showing the coverage of each model data scenario.

coverages overpopulate the time dimension, causing more
aggregations in the organized scenario to contain an event,
increasing its areal coverage and thus decreasing depth of
the curve.

Investigation into the behavior of scenarios with real-
world data is shown by plotting the cases’ corresponding
u-curves side by side in Figure 5. It is important to note
that case 1 (December 10th, 2021) had more overall cov-
erage for the 2-5 km UH, while case 2 had more overall
coverage for the 0-3 km UH (Table 1). Notice that the 0-3
km u-curves are strikingly similar (Fig. 5a), perhaps due
to the fact that both events were a significant tornado out-
break, as low-level UH measurements are a skillful indica-

FIG. 5. A graph contrasting u-curves of the 1-hour time aggregation for the (A) 0-3 km UH and the (B) 2-5 km UH.
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tor in forecasting tornadoes (Sobash et al. 2019). Notice
that the depth and the location of the u-curves differ for
the 2-5 km cases (Fig. 5b). This is likely due to the differ-
ing storm modes for the two cases (supercellular on 12/10,
derecho on 12/15).

4. Conclusion

This study highlights a method that allows for inspec-
tion of forecast areal coverage probabilities going from
small to large scales. Two different scenarios were ex-
plored. In the first, a synthetic scenario involved plotting
lines on a grid to investigate how the probabilities might
change in a variety of cases. In the second, UH values ex-
ceeding a threshold from the 1-km NSSL-WRF were plot-
ted onto the grid to see how the probabilities behaved in
a real-world environment. An algorithm was then created
that aggregated over a broad range of time and space scales
and calculated the probabilities of those aggregations con-
taining an event as a means to interpret forecast probabil-
ity on those scales. Out of these probabilities, a “u-curve”
graph was created, representing the difference in the prob-
abilities of organized scenarios versus random scenarios.
The purpose of the study was to determine how forecast
probabilities changed over a broad continuum of time and
space. The results aid forecasters and decision-makers by
detailing the most challenging spatiotemporal scales asso-
ciated with particular weather regimes and coverages, and
explain a difficulty in the FACETs vision.

Because of the organized nature of weather, forecast in-
terpretation changes based on the time and space scales
being used. This is represented in the u-curves for a va-
riety of different weather regimes which are simulated in
the synthetic storm scenarios. It is also shown that the
depth and location of the u-curve changes based on the
characteristics of the weather pattern that day, as shown
by the model UH scenarios. This means that forecast in-
terpretation also changes based on the type of weather that
occurs. Results indicate that the u-curve minima occurs
somewhere in the 64 km x 64 km x 1 hour and 128 km x
128 km x 2 hour time scales, indicating that the organiza-
tion of storms strongly influences forecasts in the watch-
to-warning space. These results characterize a challenge
in creating consistent probabilities across the spectrum of
scales, a goal of FACETs.

Future research can expand upon these findings by
adding more cases examining 0-3 km and 2-5 km UH.
Particular attention might be given to days with tornado
outbreaks as opposed to days that produce storms, but few
tornadoes. We hypothesize that the u-curves would ex-
hibit notably different characteristics for such days. In
addition, more cases investigating days of different storm
modes would help confirm the hypothesis that a difference
in the u-curves for the 2-5 km level can be attributed to the
dominant storm mode.
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