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ABSTRACT

The research on impacts of climate change on severe weather has mostly focused on estimating changes
of environmental parameters (e.g., convective available potential energy, deep-layer shear) in global climate
models, however, this approach does not take into account the synoptic pattern that can indirectly influence
severe weather. Using a self-organizing map, a type of artificial neural network, sixteen distinct synoptic
patterns based on 500 hPa geopotential height anomalies are identified. Changes in daily pattern frequencies
are assessed within the Geophysical Fluid Dynamics Laboratory Climate Model v3 under future representative
concentration pathways (RCP) scenario, RCP4.5 and RCP8.5. Environmental parameters commonly related
with severe weather environments are associated with each synoptic pattern type, and the changes of the
parameters under those patterns are evaluated within the future simulations. In both RCP4.5 and RCP8.5,
western/central U.S. ridge patterns are projected to become more frequent, especially during the summer,
and most distinctly in RCP8.5. However, this synoptic pattern is typically unfavorable for severe weather for
the U.S. as a whole. Within these patterns, convective available potential energy (CAPE) and the magnitude
of convective inhibition (CIN) increase significantly, particularly in the central U.S. The increase in CIN, as
well as declining frequencies in other summer patterns, could explain the overall projected decrease severe
weather environment days by 2100 during JJA in RCP8.5., but there is still uncertainty as global climate
models generally conflict in their projections of environmental parameters during the summer months.

1. Introduction

Severe convective storms (SCSs) are storms that pro-
duce damaging winds greater than 58 mph, hail greater
than 1 inch, and/or a tornado, and are a major threat to life
and property each year in the United States. SCSs have
produced 160 $1 billion disaster events from 1980-2022,
with an estimated total of $365.3 billion dollars ($8.5 B
per year). SCSs are also the third deadliest weather disas-
ter, resulting in 1,980 fatalities from 1980–2022 (NOAA
2022). Because SCSs pose a great danger to the popula-
tion, it’s important to study their change of frequency in
relation to a warming climate.

*Corresponding author address: Sofia Avila, Virginia Tech, Blacks-
burg,VA 24060)
E-mail: savila@vt.edu

Increasing SCS report frequency has many nonmeteo-
rological influences which render the U.S. storm database
impractical for use in assess trends, and disagreements
between climate models representation of favorable SCS
environments make it harder to find a significant corre-
lation (Kunkel et al. 2013). Investigating changes in fa-
vorable SCS environments using an “ingredients-based”
approach has been the most prevalent form of studying
climate variability of potential SCSs, and environmen-
tal parameters favorable for SCS development are well-
established which. This approach analyzes changes in
moisture, instability, and the magnitude of deep-layer ver-
tical wind shear in global climate model projections (e.g.,
Diffenbaugh et al. 2013; Trapp et al. 2007). However, the
“lifting” mechanism needed for storm initiation is difficult
to assess due to the relatively coarse resolution of global
climate models. High-resolution simulations that permit
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convection can provide further insight (e.g., Gensini and
Mote 2014, 2015; Hoogewind et al. 2017), but are ex-
pensive to produce. Parameters such as convective avail-
able potential energy (CAPE) and 0–6 km shear (S06), are
more easily assessed from global climate models (GCMs).
Convective available potential energy (CAPE) has a rela-
tionship to low-level temperature and moisture (i.e., spe-
cific humidity, Chen et al. 2020), and increased air tem-
peratures allow for greater moisture (Clausius-Clapeyron
relationship),such that temperature/moisture increases re-
sult in greater CAPE (Chen et al. 2020) with numerous cli-
mate projections agreeing in this aspect (Hoogewind et al.
2017). However, studies also show the magnitude of con-
vective inhibition (CIN; the energy needed to lift an air
parcel to where it becomes positively buoyant) is projected
to increase, mostly over land (Chen et al. 2020), which can
suppress storm development.

In the contiguous United States (CONUS), projections
of CAPE have demonstrated a robust increase for all sea-
sons, however, S06 experiences notable decreases varying
by region and season which can be attributed to decreases
in the meridional temperature gradient, most prominent
during the summer season (Diffenbaugh et al. 2013). Fur-
thermore, previous results indicate the most favorable
SCSs environments are a result of high CAPE and high
shear (Trapp et al. 2007), thus a decrease in shear could
affect storm organization. However, by combining daily
maximum product of CAPE and S06, Diffenbaugh et al.
(2013) found that the number of severe weather days is
not impacted by decreased S06, as decreases in S06 occur
when there is also low CAPE. 0–1 km shear (the mag-
nitude of the vector wind difference between the surface
wind and 1-km) has been shown to be an important in-
gredient in supercells and tornado formation (Thompson
et al. 2003). However, high-CAPE and weak low-level
shear combinations are projected to increase at a higher
fraction (Diffenbaugh et al. 2013).

Although the ingredients-based approach is important
in our understanding of SCS-favorable environments, it
does not account for storm initiation. High resolution
convection-permitting model simulations can help to ac-
count for the issue, allowing the model to develop the rela-
tionship between the environment and event. While these
simulations allow for convection to develop, they still can-
not resolve the hazards associated with SCSs, and proxies
are required to estimate their occurrence. Common prox-
ies include updraft helicity (UH) (Robinson et al. 2013;
Trapp et al. 2011) and maximum upward vertical veloc-
ity in the lowest 400 hPa (UVV) (Hoogewind et al. 2017).
UH measures a storm’s rotation in the updraft , and UVV
measures the updraft speed within a thunderstorm. How-
ever, UH fails to replicate SCS days well during the sum-
mer season in the eastern U.S. relative to UVV, likely due
to severe weather produced by more disorganized modes
of convection (Hoogewind et al. 2017). Hoogewind et al.

(2017) found that, generally, there is an increase in SCS
frequency relative to an increase in warming, however,
during the summer season, the conditional probability of
SCS given favorable environmental conditions decreases.
Dynamical downscaling approaches have been an effec-
tive way to study the “initiation” problem, but its com-
putational requirements limit the ability to produce en-
sembles. Using synoptic patterns to project future SCS-
favorable conditions has not been researched as exten-
sively as the ingredients-based approach. It has limitations
based on the assumption that synoptic variables (such as
500 hPa geopotential height) will create the environments
needed for storms (Lee 2012). However, synoptic patterns
are generally more reliably reconstructed in GCMs. Lee
(2012) analyzed changes in 500 and 700 hPa geopoten-
tial heights, and 850 hPa temperatures, as the heights in
these two pressure levels represent trough/ridge patterns
and shortwave patterns as well. Warm temperature ad-
vection at 850 hPa is a good indicator of surface conver-
gence, which might signal favorable environments. Lee
(2012) used several statistical methods (principal compo-
nent analysis, cluster analysis, and discriminant function
analysis) to group similar patterns associated with F2+ tor-
nado days. Two global climate models with two differ-
ent warming scenarios were used to project changes in the
probability of tornado day frequency during the 2050s and
2090s. The results suggested that tornado days will likely
increase in the earlier part of the tornado season in com-
parison to other months, especially in the highest warming
scenario in the 2090s. Apart from tornadoes specifically,
only regional synoptic pattern analysis has been done to
analyze their influence on surface conditions (e.g., Hope
2006) (e.g., Hope 2006 examined rainfall in Australia, not
severe weather), and a synoptic climatology associating
severe weather outbreaks in the CONUS has been built
(e.g., Johns 1984), however, a warming climate provides
another perspective to consider.

This study aims to combine the environmental and pat-
tern approach to find a connection and assess how chang-
ing synoptic patterns may influence changes in SCS favor-
able environments under future radiative-forcing scenar-
ios. By linking these two approaches, we hope to provide
some indirect insight on the storm initiation problem.

2. Data and Methods

In this study, we will be using the Geophysical Fluid
Dynamics Laboratory Climate Model v3 (GFDL-CM3),
as it has shown to be a high-performing GCM in sim-
ulating the climatology SCS environments (Seeley and
Romps, 2014). The simulations were produced for
the Coupled Model Intercomparison Project Phase 5
(CMIP5); specifically, we will use the historical simula-
tion (1971—2005) and two future warming experiments
(2006-–2100). The representative concentration pathway
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FIG. 1. The self-organizing map z500 standardized anomaly patterns. The positive height anomalies are shown in red and negative height anomalies
are shown in blue.

(RCP) 4.5 and 8.5 are the two future scenarios that will
be analyzed and are measured by the degree of radiative
forcing that is estimated to be reached by 2100. RCP 4.5
describes a “moderate” forcing scenario with an increase
of 4.5 W m−2 by 2100, which is a “peak and decay” sce-
nario, with the highest radiative forcing occurring in 2040
and declining thereafter. RCP 8.5 describes a high-forcing
scenario with an increase of 8.5 W m−2 by 2100.

To classify synoptic patterns, we use an artificial neural
network called a self-organizing map (SOM). The SOM
has become popular in synoptic climatology, since it is
able to classify similar patterns together without the need
for the user to “teach” the algorithm prior to clustering.
The mapping of a SOM is realized in such a way that sim-
ilar “nodes” are closer to one another and dissimilar nodes
are far apart, with the most distinct lying on opposite sides
of the map. A limitation to this approach requires that the
number of clusters must be selected beforehand (Sheridan
and Lee 2011). However, this is common among other
clustering methods, including K-means clustering.

The self-organizing map is trained using daily mean 500
hPa geopotential height (z500) from the European Cen-
ter for Medium-Range Weather Forecasting Reanalysis v5
(ERA5) for the years 1950–2020. A 31-day centered mean
is calculated on the z500 data, explicitly, every day of the
year (365 days) has a mean corresponding to 15 days prior
and 15 days after to account for daily variations. A 30-
year rolling mean is calculated on the centered means to
serve as a climatological baseline. Standardized anoma-

lies are computed for and used as input in the SOM. The
node configuration in the SOM is organized as a 4×4 array
to produce 16 nodes, with each node representing a differ-
ent z500 standardized anomaly pattern. The trained SOM
model is then applied to the historical and future simu-
lations in order to provide a classification for each day.
Convective parameters (e.g., CAPE, S06, CIN) are com-
puted from CM3 simulations. Geopotential heights are
computed on the hybrid-sigma coordinates via the hypso-
metric equation, and z500 is found by interpolation to 500
hPa.

To identify a potential severe weather day, the product
of CAPE and S06 has shown to be a good parameter for
when environments are favorable for SCS (Brooks et al.
2003). We will use the definition as in Hoogewind et al.
(2017), where CAPE×S06 exceeds a threshold of 20,000
m3 s−3, given CAPE ≥ 100 J kg −1, S06 ≥ 5 m s −1, and
CIN ≥ -100 J kg −1. A potential severe weather is iden-
tified if the threshold is met or exceeded anytime between
12–12Z, and the number of days of severe weather (ND-
SEV) and be aggregated. CAPE and CIN are computed
using a 100 hPa mixed-layer parcel.

3. Results

The 16 general synoptic patterns identified by the SOM,
as illustrated by its component planes, are illustrated in
Figure 1. In the top-left corner, patterns have positive
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FIG. 2. The probability of a tornado watch given node. The dashed horizontal line represents the climatological daily mean probability of a tornado
watch during the season. The light and red shading indicate 1 and 0.5 standard deviations (σ ) from the mean, respectively.
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FIG. 3. As in Fig. 2, except for 10% Tornado PPH days.

z500 standardized height anomalies located in the west-
ern/central portions of the U.S., indicating ridging pat-
terns, whereas increasing node number toward the lower
right corner demonstrates height anomalies in the west-
ern/central U.S., or troughing. Nodes closer to one an-
other are more closely related pattern wise. To assess se-
vere weather likelihood, specifically tornadoes, each node
is related to tornado watches and 10% tornado Practically
Perfect Hindcast (PPH) days (Gensini et al. 2020) occur-

ring during the period 1979–2020. The seasonal probabil-
ity of a tornado watch day, given node, is assessed relative
to climatology. Tornado watches are chosen because they
are issued when environmental conditions are favorable
for tornadoes. A node is more favorable if the probability
of a tornado watch in a node exceeds the climatological
daily probability for that season (and more so if the proba-
bility exceeds 0.5 or 1 standard deviations from the mean),
and a node is unfavorable if falls below the climatological
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FIG. 4. Comparison of historical simulation (blue) and ERA5 reanalysis (red) on node frequency for the years 1971–2005. Shading indicates 95%
confidence intervals.

daily mean. The results show that generally, more tornado
watches are likely to occur on days where the node pat-
terns from 8–16 are present (Fig. 2), this can be seen again
with the 10% tornado PPH days (Fig. 3) for all seasons.
Nodes 1–7 show to be unfavorable for tornado watches,
specifically node 6 during March-April-May (MAM) and
June-July-August (JJA) season.

To assess whether the GFDL-CM3 historical simula-
tions (1971-–2005) can reasonably recreate the climatol-
ogy of node frequencies, the annual and seasonal time se-
ries are compared against ERA5, in which the SOM was
trained. GFDL-CM3 historical simulation seems to cap-
ture the ERA5 reanalysis well annually (Fig. 4). Although
for nodes 10 and 11, the historical simulation seems to
slightly overestimate the node occurrence, and in node
16, the historical simulation shows slight negative bias
in comparison to ERA5. The seasonal time series (not
shown) describes a similar scenario for node 11 during the
months of March-April-May (MAM), and for both nodes
10 and 11 during June-July-August (JJA), although node
16 is well reconstructed in the historical simulation for
those two seasons.

The annual time series of node frequency for the GFDL-
CM3 simulations (1971–2100) indicate substantial in-
creases in nodes 6 and 7 (Fig. 5), most distinctly within
the last half of the 21st century. Nodes 6 and 7 increase
more under RCP8.5 relative to RCP4.5, most prominently
in node 7. Other nodes demonstrate less change, if at all,
although there is some differences between RCP4.5 and
RCP8.5 in nodes 1, 12, and 13. In these patterns, the fre-
quency increases in RCP4.5 after 2040, while node 10, on
the other hand, begins to increase again after 2080 in the
RCP8.5. The time series of node frequencies by season
(not shown) illustrate that the increasing annual trend of
nodes 6 and 7 in RCP4.5 and RCP8.5 arise primarily dur-
ing JJA, although node 7 frequency is significantly higher
than node 6.

As the change in node frequencies are most notable by
the late century, we limit the rest of our analyses for the pe-
riod 2071–2100. On a seasonal basis, as illustrated in Fig.
6, DJF has slight increases in both simulations in southeast
U.S.. During the spring (MAM), greater increases in ND-
SEV are noted in RCP8.5 relative to RCP4.5, most notably
near Arkansas. During JJA there is a strong increase in the
Northern Plains in both scenarios, with more pronounced
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FIG. 5. Node frequency time series for historical simulation (black), RCP4.5 (blue), and RCP8.5 (red) from 1971-2100. Rolling 30-year means are
denoted by the thicker lines and 95% confidence intervals are shaded.

changes in RCP8.5 (≥ 15–20 days). However, RCP8.5 no-
tices a slight decrease in NDSEV in the central Plains near
the Texas Panhandle. For SON, there is smaller, yet sta-
tistically significant changes, in NDSEV for both RCP4.5
and RCP8.5. Because the most noted changes occur dur-
ing JJA and in RCP8.5, we focus on those months and sim-
ulation when looking at differences in NDSEV by node
(Fig. 7). Nodes 6, 7, and 14 have the most notable mean
increases in NDSEV frequency, while nodes 1, 12, 13, and
15 show the most notable decreases for a large part of the
country. For the latter, the decreases in 1, 12, and 13 occur
due to a significant decrease in the pattern frequency from
the historical. It becomes apparent that node 6 and 7 con-
tribute the majority of the seasonal increases in NDSEV as
a whole. Node 7 has a greater increase than node 6, where
the highest change occurs in the Northern Plains.

Breaking down the individual parameter components of
NDSEV, we will focus on changes in CAPE, S06, and CIN
for RCP8.5 during JJA. CAPE increases in all nodes for
JJA (Fig. 8), but node 6 and 7 have the highest increase
in the northern Plains, with the highest magnitude in Ne-
braska. S06 decreases in all nodes for JJA (Fig. 9), how-
ever, nodes 6 and 7 see the most S06 decrease for the East
coast and Midwest regions, and a very slight increase in
Southern Texas. CIN increases for most nodes (Fig. 10),

although there are some decreases that vary regionally in
certain nodes (node 1 and 12). Node 6 and 7 increase
in mean CIN all throughout the U.S., with the highest
CIN magnitude increases located in the central CONUS.
In node 7, the change in mean CIN magnitude is greatest
in the Texas panhandle.

4. Discussion and Conclusions

Synoptic pattern analysis is useful for identifying favor-
able/unfavorable large-scale setups for SCS events, and by
combining this analysis with environmental parameters it
allows for assessment of synoptic pattern contribution to
overall changes in severe weather days/ingredients. Our
pattern approach is rather simple, based only on z500 stan-
dardized anomalies. For a more complete synoptic ap-
proach, other variables could also be taken into account
when analyzing the patterns that are favorable, such as
temperature, geopotential heights, and winds at varying
pressure levels, mean sea-level pressure, low-level ther-
modynamic variables, to name a few, that might con-
tribute to a more detailed pattern identification. The syn-
optic pattern and environment are not wholly independent.
Troughs can alter the downstream atmosphere through
differential temperature and moisture advection, which
modifies lapse rates and impacts CAPE and CIN, and
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FIG. 6. Seasonal mean changes in NDSEV for RCP4.5 and RCP8.5
(2071–2100) relative to the historical climatology (1971–2000). Stip-
pling indicate where the future and historical distributions are statisti-
cally significantly different at the 95% confidence level using the Mann-
Whitney U-test.

thus preconditions the atmosphere for deep convection.
Nonetheless, combining the two approaches still adds ad-
ditional information not obtained from the environmental
approach alone.

The increase in ridging patterns (nodes 6 and 7) in fu-
ture projections is significant, particularly during the sum-
mer and in the RCP8.5 scenario. Node 6 and 7 pat-
terns in the U.S. are generally less favorable for severe
weather as a whole, but varies regionally. For example,
during the summer, ridging patterns are supportive of se-
vere weather along the northern periphery of the ridge, a
so-called “ring of fire” pattern, while generally hostile to
convection development beneath the interior of the ridge.
Despite this, analysis demonstrates increases in NDSEV
everywhere east of the Continental Divide, including the
central Plains, despite an otherwise unfavorable pattern.
This inconsistency in signal may arise in the environmen-
tal approach largely due to increasing CAPE. In compari-
son to the seasonal mean

For the period 2071–2100, the seasonal mean differ-
ences in NDSEV for RCP8.5, relative to the historical sim-
ulations, indicate that NDSEV are projected to increase
overall in the north Central Plains. However, the Central
Plains has a negative difference, which could be explained
by decrease S06 or increase in CIN. The difference of ND-
SEV for node 7, however, does not see decreases in days,
in fact, NDSEV, there is an overall increase which may
be attributed to very high increases of CAPE in this pat-
tern. CAPE has been shown to increase in previous envi-

ronmental approach studies (e.g., Diffenbaugh et al. 2013)
while S06 decreases, and the results of this study agree
with that. Furthermore, the results indicate that no matter
the pattern classification, CAPE increases, suggesting that
anthropogenic forcing, and resultant warming, contribute
to increasing CAPE. Although the S06 decreases in many
of the node patterns, that is not the consistent for all node
patterns and regional variations exist.

Hoogewind et al. (2017) found that CIN increases
strongly during JJA in the central U.S. in 2071–2100, and
this study found that CIN increased in nearly all patterns
during JJA, with exception for regional decreases in nodes
1, 12, and 15. Many areas of increase in nodes 4, 5, 8, and
16 were relatively large in terms of changes in the mean,
but the seasonal distributions were not statistically signifi-
cantly different.

This research combined the well-established environ-
mental approach with a synoptic pattern analysis to in-
vestigate the potential change in severe weather within
21st century projections from GFDL-CM3. Using a self-
organizing map, 16 common daily mean z500 standard-
ized anomaly patterns were identified from ERA5 re-
analysis; the trained SOM model was then used to clas-
sify patterns within GFDL-CM3 simulations. This study
found that two western/central ridge patterns increased
in frequency within RCP4.5 and RCP8.5, most notably
in RCP8.5 for JJA. Evaluating mean changes in NDSEV,
CAPE, S06, and CIN by node, CAPE and CIN consis-
tently increase while S06 decrease overall, and the magni-
tude and location of the differences varied by pattern type.

Although not the first to examine synoptic climatology
and severe thunderstorms (e.g., Johns 1984) or synoptic
variability in a warming future climate (as in Lee 2012),
this work shows that changes in environmental parameters
are pattern dependent, implying that some environments
will become more frequent than others depending on time
of year and region. The use of only one GCM is a limita-
tion of this study, whereas an ensemble approach would al-
low for assessment of possible trajectories and uncertainty
in future projections, especially during JJA when GCMs
tend to diverge (e.g., Diffenbaugh et al. 2013). Also, our
synoptic patterns were defined by only using z500, where
finding more synoptic variables associated with SCS envi-
ronments (as in Lee 2012) would provide a greater profile
on severe environment changes. In the future, this work
will be expanded to incorporate the convection-allowing
regional climate simulations of Hoogewind et al. (2017)
which downscaled GFDL-CM3, to further examine the
pattern-environment relationship with respect to simulated
SCSs.
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FIG. 7. Mean change in RCP8.5 JJA NDSEV (2071–2100) relative to the historical baseline (1971–2000). Stippling indicates where the future
and historical distributions are statistically significantly different at the 95% confidence level using the Mann-Whitney U-test. Annotations in the
lower-left corner of each panel indicate the change in total node frequency (and percentage change) between the future and historical periods.

FIG. 8. As in Fig. 7, except for CAPE
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FIG. 9. As in Fig. 8, except for S06.

FIG. 10. As in Fig. 8, except for CIN.
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