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ABSTRACT

Four radar-based quantitative precipitation estimation (QPE) products from the Multi-Radar Multi-Sensor
(MRMS) system are evaluated against hourly and daily gauge-based rainfall amounts over Alaska, Hawaii,
and Puerto Rico. Three products are 1) Radar-Only QPE (Q3RAD), the initial version of MRMS QPE that
is reflectivity-based, 2) Dual-Polarization QPE (Q3DP), a version of Q3RAD which uses dual-polarization
variables in its calculations, 3) Dual-Polarization QPE with Evaporation Correction (Q3EVAP), a product
which adds an evaporation correction to Q3DP, and 4) Multi-Sensor QPE (Q3MS), which utilizes gauge-
based correction and terrain data and is evaluated daily. The evaluation of QPE data takes place from June
2019 to June 2021. Both the Alaska and Puerto Rico domains exhibited spatial error trends corresponding
to the quality of radar coverage, with larger errors in regions of poor coverage. The Hawaii domain was
characterized by underestimation throughout the region. Puerto Rico was prone to overestimates in the west,
but did not have a problem with underestimation. The results of the study are useful to those who wish to
learn more about the present limitations and challenges of radar-based QPE in domains outside the continental
United States.

1. Introduction

Accurate and timely quantitative precipitation estimates
(QPEs) are vital to real-time flash flood modeling, agri-
culture, and water resource management. Creating a QPE
system which yields precise estimates at a high spatial-
temporal resolution, however, is a challenge. There are
two primary approaches to QPE derived from different
sources: rain gauge-based QPE and remotely sensed QPE.
Both have specific advantages and drawbacks.
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Rain gauges provide relatively accurate rainfall mea-
surements, but those measurements are confined to the sin-
gle gauge point. Rain gauges lack the spatial distribution
necessary to accurately represent highly variable precipi-
tation events (e.g. Kitchen and Blackall 1992, Goodrich
et al. 1995) and are too sparse for some hydrological ap-
plications (e.g. Sempere-Torres et al. 1999). Individual
points of gauge data have limits in their accuracy. These
limitations include bias due to a poor gauge site (Sieck
et al. 2007), undercatch due to surface wind (e.g., Lar-
son and Peck 1974; Pollock et al. 2018), blockage of the
gauge opening (Sieck et al. 2007), and bias due to mechan-
ical instrumentation impairment (Martinaitis et al. 2015).

Based on v4.3.2 of the AMS LATEX template 1
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Precipitation melt and/or stuck gauges can compromise
precipitation measurements in scenarios with solid win-
ter snow (Qi et al. 2016). Solid winter precipitation in-
creases the size of undercatch due to wind (Goodison and
Yang 1998; Nešpor and Sevruk 1999). Strong winds, in-
strumentation breakdown, and winter freezing can result
in entirely compromised or missing data (e.g. Qi et al.
2016; Martinaitis et al. 2015).

Radar-based QPE can be generated at a high spatial-
temporal resolution, and can therefore better represent the
variability of precipitation (Berne and Krajewski 2013).
But radar-based QPE does still have drawbacks, including
errors in areas with poor radar coverage and other biases
(Zhang et al. 2020). Possible sources of this error includes
the presence of a large part of the radar beam intersect-
ing the melting layer (which causes bright band contami-
nation), the presence of hail, and partial or full blockage
of the radar beam by terrain or physical objects (Austin
1987; Andrieu et al. 1997). In recent years, there have
been many notable advancements in radar-based QPE in-
corporated into the Multi-Radar Multi-Sensor (MRMS)
suite of products developed by the NOAA National Severe
Storms Laboratory (NSSL) (Zhang et al. 2016). Among
these are the precipitation classification capabilities of
dual-polarization radar (Park et al. 2009) and schemes to
mitigate clutter and bright band contamination.

The drawbacks of radar-based QPE are evident in the
MRMS domains outside the continental United States
(OCONUS domains). Areas in northern Alaska are
completely uncovered by radar; additionally, in Alaska,
Hawaii, and Puerto Rico, mountainous terrain contributes
to significant beam blockage (Fig. 1). Despite its draw-
backs, radar-based QPE’s higher spatial-temporal resolu-
tion necessitates its use in these regions. Alaska, Hawaii,
and Puerto Rico are all susceptible to floods (O’Connor
and Costa 2004), which demonstrates the urgent need
for remote sensing and fast detection of precipitation in
these regions. While MRMS products are operational in
the OCONUS domains, their errors in these areas have
not been systematically investigated. The purpose of this
study is to examine and quantify the error characteristics
of MRMS QPE products over Alaska, Hawaii, and Puerto
Rico.

2. Data

The data for this study are from June 2019 to June 2021
and include MRMS QPEs, rain gauge measurements, lo-
cation data, Numerical Weather Prediction (NWP) fields,
and PRISM. QPE data analyses are hourly for Q3RAD,
Q3DP, and Q3EVAP. The QPE data analysis for Q3MS
uses 24-h accumulations. The analyses of each product
are conducted over three domains: Alaska, Hawaii, and
the Caribbean. Each domain area is bounded by lati-
tude/longitude coordinates (Table 1).

(a)

(b)

(c)

FIG. 1: Radar Quality Index (RQI) product-viewer for
Alaska (a), Hawaii (b), and Puerto Rico (c). Includes over-
lay of radar locations and is shaded topographically.

TABLE 1: OCONUS Domain Boundaries for MRMS
Products

Domain Latitude Longitude

Alaska 50◦N to 72◦N 176◦W to 126◦W
Hawaii 15◦N to 26◦N 164◦W to 151◦W

Caribbean 10◦N to 25◦N 91◦W to 60◦W

a. MRMS QPE Products

The authors used four MRMS QPE products in this
study. These products are as follows:
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• Radar-Only QPE (Q3RAD)

• Dual-Polarization QPE (Q3DP)

• Dual-Polarization QPE with Evaporation Correction
(Q3EVAP)

• Multi-Sensor QPE (Q3MS)

Q3RAD uses both the precipitation classification ca-
pabilities of dual-pol radar and the clutter and bright
band filtration schemes described previously for its esti-
mations. Quality-controlled radar data are transformed
into a precipitation quantity at each grid cell through a
unique reflectivity-rain rate relationship (R−Z) based on
a surface precipitation classification scheme (Zhang et al.
2016). Hydrometeors are classified by a set of parameters
which includes data from the Rapid Refresh (RAP) numer-
ical weather prediction model in Hawaii and Puerto Rico,
and the High Resolution Rapid Refresh (HRRR) model in
Alaska.

Q3DP differs from Q3RAD in that it uses dual-
polarization moments to estimate precipitation rates; this
includes specific differential phase (Kd p) in areas with po-
tential hail and specific attenuation estimation (A) in ar-
eas of pure rain (Zhang et al. 2020). Using the specific
attenuation-rate rate relationship (R−A), the Kd p-rain rate
relationship (R−Kd p), and R−Z above the melting layer,
a synthetic rain rate estimate is formed (Zhang et al. 2020).
Evaluation of Q3DP has shown that it has less errors than
Q3RAD across the CONUS; specifically, Q3DP reduces
the heavy rainfall wet bias and underestimation in areas
with partial beam blockage (Zhang et al. 2020). However,
these evaluations also show that Q3DP tends to underes-
timate cases with light rain, especially in regions where
there is beam blockage (Zhang et al. 2020).

Q3EVAP applies an evaporation correction scheme to
Q3DP (Martinaitis et al. 2018). This evaporation correc-
tion is designed to account for the portion of precipita-
tion which evaporates before it reaches the surface. First,
3D RAP data are used to create an environmental pro-
file. Then an evaporation correction based on precipitation
type is applied at several levels in that 3D profile until it
reaches the surface. Q3EVAP corrects some overestima-
tion, but can worsen underestimation, especially in cases
where radar quality is low (Zhang et al. 2020). In cases
where the radar beam height is high (and RQI is there-
fore low), the evaporation correction can worsen underes-
timates from overshooting.

Q3MS applies a local gauge-based correction (LGC)
scheme to radar estimations, while Mountain Mapper QPE
(MM; Zhang et al. 2016) and model QPF are used to fill in
radar coverage gaps (Martinaitis et al. 2020). MM interpo-
lates gauge observations onto orthographic data from the
Parameter-Elevation Regressions on Independent Slopes
Model (PRISM; Daly et al. 2008, 1994). The model QPF

data used are from the High-Resolution Rapid Refresh
(HRRR) model (Benjamin et al. 2016) . The gauge data
used in MM and the LGC radar estimates are from the Hy-
drometeorological Automated Data System (HADS; Kim
et al. 2009) and the Meteorological Assimilation Data In-
gest System (MADIS; Helms et al. 2019). Gauge data
go through a quality control algorithm (Martinaitis et al.
2021). Estimates from multi-sensor QPE have shown im-
provement over MRMS radar-only QPE in areas of the
western CONUS where beam blockage is a challenge
(Martinaitis et al. 2020).

b. Supplementary Data

Radar Quality Index (RQI) is a MRMS product based
on a beam blockage component and a component deter-
mined by variation in the vertical profile of reflectivity.
RQI is defined on a scale from 0 to 1, where 1 indi-
cates high radar quality and a radar beam entirely be-
low the melting layer (Zhang et al. 2016). Low RQI has
been shown to be associated with radar QPE errors (Chen
2013).

c. Gauge Data

For this study, the authors considered gauge data as
ground truth. Gauge data compared to the Q3RAD, Q3DP,
and Q3EVAP products are from the HADS and MADIS
networks.The Q3MS gauge-adjustment process utilizes
the HADS and MADIS gauge data that passed the MRMS
gauge quality control logic; thus the authors used 24-hour
gauge data from the Community Collaborative Rain, Hail,
and Snow (CoCoRaHS) Network for independent evalua-
tions of Q3MS. The Q3MS gauge-adjustment process uti-
lizes MADIS gauge data.

3. Methodology

The methodology for this study was inspired by Chen
(2013) and extends the work of Santer and Grams (2021).

a. Data Filtering and Compilation

The authors used data from a long term archive of
MRMS QPE data for the OCONUS domain evaluations.
QPEs were matched to gauge observations. The hourly
HADS and MADIS gauge data were filtered through the
quality control algorithm described in Martinaitis et al.
(2021). The authors used gauge data which passed or con-
ditionally passed the quality test according to the MRMS
flags. Gauge data which has been entirely removed from
the data set due to MRMS flags include suspect values
that are considered unrealistic, outlier values when com-
pared to radar data, and false values when compared to
QPE sources. MRMS flags also filter most cases where
Q3DP or the gauge differ on the presence of precipitation;
there are some exceptions in which the gauge is on the
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edge of a precipitation area. MRMS flags gauge measure-
ments which have a corresponding RQI which is less than
0.4 as a conditional pass in most cases. In addition to filter-
ing data through the quality control algorithm, the authors
themselves filtered out data where radar precipitation is
missing and data where all three QPEs were zero.

b. Statistical Methods

The authors were primarily concerned with two at-
tributes of MRMS product errors: size and bias. There
are three error statistics that the authors used to charac-
terize these two attributes: mean accumulated difference
(MAD), root squared mean error (RMSE), and Pearson’s
correlation coefficient (PCC),

MAD =
∑

N
i=1 Ei−Gi

N
. (1)

RMSE =

√
∑

N
i=1(Ei−Gi)2

N
. (2)

PCC =
∑

N
i=1(Ei− Ẽ)(Gi− G̃)√

∑
N
i=1(Ei− Ẽ)2 ∑

N
i=1(Gi− G̃)2

. (3)

where Ei denotes the ith rainfall estimation, Gi denotes
the ith gauge observation, and N denotes the total number
of observations. The authors used MAD to evaluate QPE
bias and RMSE and PCC to evaluate QPE accuracy. To
evaluate correlations and interaction effects, the authors
binned the data by location, by environmental parameters,
and by gauge accumulation.

4. Results

Many individual points have few observations; the au-
thors masked grid points with less than 15 observations in
geographical graphs as there were too few observations to
robustly represent the area.

a. Alaska

Q3EVAP tends to underestimate precipitation in the
Alaska panhandle (Fig. 2a). There is slight overestima-
tion around Anchorage and on the southern edge of the
Cook Inlet, but slight underestimation on the oceanic side
of Cook Inlet. In general, there is dry-bias over portions
of Alaska (Fig. 2a).

The highest RMSE is on the eastern side of Alaska,
though there is another small cluster slightly west of the
Cook Inlet (Fig. 2b). While RQI is near 0 around the
Cook Inlet (Fig. 1a), RMSE is between 1 and 2 mm which
is comparable to that over much of CONUS (Santer and
Grams 2021). PCC is lower north of the Cook Inlet and in
spots between the Fairbanks and Anchorage clusters (Fig.
2c).

(a)

(b)

(c)

(d)

(e)

FIG. 2: MAD (a), RMSE (b), and PCC (c) values for
Q3EVAP over Alaska; MAD for QEVAP 24-h data (d)
and Q3MS 24-h data (e). Square size is approximately
100 km2.
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Q3MS has less bias than Q3EVAP for the 24-h data,
with the caveat that the range of CoCoRaHS data over
Alaska is very limited (Fig. 2d - 2e).

(Fig 2c).
At high levels of gauge accumulation, a large portion

of the rain is undetected (Fig. 3a). Cases with high RQI
tend to have errors closer to zero, though data for large
rain amounts in high RQI areas is limited in Alaska (Fig
3b). Though the data for large rain amounts is limited, this
suggests that large volumes of rain are undetected with
lower RQI and confirms previous analysis of MRMS QPE
products (Santer and Grams 2021). Q3RAD has a larger
tendency towards overestimation with high RQI (Fig 3b;
Q3EVAP and Q3DP are almost identical (Fig. 3b), which
suggests this is due to Q3DP’s use of R−A and not due to
the evaporation connection in Q3EVAP; however, there is
no direct relationship between RQI and error (Fig 3c).

b. Hawaii

Underestimation relative to gauges is prevalent through-
out the state of Hawaii with the strongest average under-
estimation occurring on the north side of Kauai, the north-
eastern edge of Hawaii Island, and the central western
coast of Hawaii Island. The island of Oahu and the south-
ern portion of Kauai also suffer from underestimation, but
to a lesser degree than elsewhere (Fig. 4a). The RQI map
for the state of Hawaii depicts significant beam blockage
over the northern part of Kauai (Fig. 1b), which does seem
to line up with the location of the greatest underestimates,
but the western portion of Oahu also has low RQI (Fig.
1b) with no such underestimates (Fig 4a).

The highest RMSE can be found on the north side of
Kauai, the western portion of Oahu, the northeastern por-
tion of Hawaii Island, and the central western edge of
Hawaii Island (Fig. 4b). Overall, Hawaii Island and Maui
tend to have higher RMSE than Oahu and Kauai (Fig. 4b.
The western side of Kauai (which has lower RQI; Fig. 1b)
did not have a strong bias but it does have a larger RMSE
(Fig. 4b).

PCC is fairly consistent throughout the Hawaiian Is-
lands. The southern and more interior portion of Hawaii
Island tends to have higher correlation than the coast; the
PCC is especially low at the interior of the western clump
seen in the MAD and RMSE analysis (Fig. 4c). Corre-
lation does not seem to differ across Kauai (Fig 4c); it is
slightly lower on the northern edge of Oahu but this differ-
ence seems less pronounced than it was with MAD. Q3MS
has lower RSME than Q3EVAP for the 24-h data in some
locations (Fig. 4d -4e).

Most of the error charts for Hawaii did not seem to have
much linearity, with two exceptions. There seems to be a
fairly linear relationship (a negative correlation) between
gauge catch and error (Fig. 5a). Q3EVAP and Q3DP have
a bit more variability and are closer to zero. This suggests

that the R− A relationship used in Q3EVAP and Q3DP
is less associated with underestimates in Hawaii. The
other notable error chart is for the relationship between
surface temperature (TSFC) and QPE-gauge differences.
For all three MRMS radar-only products, underestimation
is worst when TSFC is between 10 and 15 deg C but is
reduced as temperatures rise (Fig. 3b).

c. Puerto Rico

Bias in Puerto Rico is variable over most of the region
except on the western edge of the island, where there is
consistent underestimation (Fig. 6a). Overestimates are
less frequent and are more concentrated along the southern
coastline (Fig. 6a). RMSE increases from east to west in
Puerto Rico (Fig. 6b). It is highest on the western edge
where RQI is also much lower (Fig. 1c). PCC is lower on
the western edge of Puerto Rico (Fig. 6c).

5. Discussion and Conclusions

The negative correlation between gauge accumulation
and error was observed with varying intensity and confi-
dence in all three OCONUS domains. This negative cor-
relation was also observed in CONUS (Santer and Grams
2021) when examining the same statistic. Large gauge ac-
cumulations are rare, and these plots do emphasize cases
with medium to high gauge accumulations. A case with a
gauge accumulation of 60 mm with Q3EVAP estimates of
30 mm might have a 50 percent detection rate but a 30 mm
error. Operating with percent error creates a similar prob-
lem for areas with tinier amounts of rain. Despite these
biases, the negative correlation between gauge accumula-
tion and error is still important to consider.

Hawaii had significant underestimates for all three
radar-based products. Error also tended to be fairly ge-
ographically concentrated, suggesting that these underes-
timates may be related to location. Hawaii is transitioning
from RAP to HRRR currently; the improved resolution
and accuracy expected in this upgrade will likely improve
Q3MS estimates significantly.

Though RQI never had an explicit correlation with er-
rors, the two still seem to be connected. The western
edge of Puerto Rico had the highest RMSE values and is
where there is the lowest RQI. Estimates in Hawaii also
had more error around regions that had lower RQI. The
interaction between RQI and the gauge-catch error rela-
tionship in Alaska suggests that RQI may interact with
other variables. It is also possible that RQI is correlated
with another unknown variable or geographic factor that
contributes to the connection.

In 24 hour comparisons, Q3MS outperformed Q3EVAP
in both Alaska and Hawaii. The locations of Q3MS anal-
ysis were highly restricted for Alaska. Little data exists
as to how Q3MS estimates compare to Q3EVAP estimates
in areas of Alaska with lower RQI. Hawaii’s Q3MS data
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(a)

(b)

(c)

FIG. 3: Residual quantile plots for Q3RAD, Q3DP, and Q3EVAP in Alaska with respect to gauge accumulation (a),
gauge accumulation with RQI > 0.66 (b), and RQI (c).

does include some areas with low RQI and does show im-

provement in some of those areas, but that may not be true

for Alaska. Q3MS has the ability to cover a much wider

area like Alaska than solely radar-based products, but fur-
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(a) (b)

(c) (d)

(e)

FIG. 4: MAD (a), RMSE (b), and PCC (c) for Q3EVAP over Hawaii. MAD for QEVAP 24-h data (d) and Q3MS 24-h
data (e). Each square is about 20 km2.
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(a)

(b)

FIG. 5: Residual quantile plots for Q3RAD, Q3DP, and Q3EVAP in Hawaii with respect to gauge accumulation (a),
surface temperature (TSFC; b).

ther analysis is needed to understand the uncertainty in the
gaps filled by Q3MS.

Alaska faces the largest challenges when it comes to
QPE. It is plagued by a lack of radar coverage, an is-
sue which is not easily (or cheaply) fixed. Q3MS fills
those gaps, but there is not enough independent CoCo-
RaHS data to properly evaluate its performance. Alaska
also lacks widespread gauge data of a high enough qual-
ity to pass MRMS QC in many locations. Improving the
quality of gauge data in these locations through improved
instrument maintenance and siting would facilitate more
thorough evaluations of QPE products in Alaska and may
ensure more accurate gap-filling QPE from Q3MS. Alaska
may benefit from satellite-based QPE.
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