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ABSTRACT

Cloud-to-ground lightning is an extremely dangerous weather phenomenon resulting in 28 deaths annually
over the last decade; currently, there are no requirements for National Weather Service to communicate light-
ning dangers or hazards to public. A probabilistic algorithm was developed at the National Severe Storms
Laboratory using machine learning to create an automated system that generates objects around areas where
it predicts cloud-to-ground (CG) lightning will occur. In spring 2017, nine forecasters from the National
Weather Service tested a Probabilistic Hazard Information prototype in the Hazardous Weather Testbed in
which they used the guidance of the automated system, modified these objects from the system, and created
their own objects to ideally create better forecasts of CG lightning. These forecaster and automated objects
were verified and aspects of their performance, such as the probability of detection, were compared to see
if the forecasters added value to the automated system. Forecasters added value to the system by adding
discussion to the objects and through modifying the size, severity, duration, and probability of the lightning
storms. However, forecasters found the task particularly tedious to complete. The areas where the forecasters
are adding the most value could be used to improve the automated system’s performance at predicting CG
lightning, further reducing forecaster workload.

1. Background

Cloud-to-ground (CG) lightning is a threatening phe-
nomenon not only to property and electrical grids, but to
human life as well (Cummins and Murphy 2009; Mosier
et al. 2011). Over the last ten years, the average number of
deaths by lightning in the United States is 27 casualties per
year (weather.gov cited 2018). In 2008, lightning was the
second most common weather-related source of fatality in
the United States with 58 fatalities that year (Mosier et al.
2011). At present, there is no formal warning system in
place for CG lightning from the National Weather Service
(NWS).

The threat of life and property by CG lightning has
led researchers at the National Severe Storms Laboratory
(NSSL) to develop an automated system for forecasting
CG lightning (Meyer et al. 2017). Historically, Doppler
weather radars and other radar systems, more commonly
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used for the detection of thunderstorms, have been used
to predict CG lightning with mixed results (Hondl and
Eilts 1994; Gremillion and Orville 1999). Gremillion and
Orville (1999) found that a 40-dBZ echo at the temper-
ature height of -10◦C served as a solid indicator of the
start of CG action, revealing a relationship between radar
reflectivity in the mixed phase of ice and supercooled liq-
uid water and the prediction of CG lightning. Indicators
of lightning and storm electrification may help by provid-
ing evidence of intense storm parameters and from there
attempt to predict where the lightning itself would strike;
but radar features provide no guarantee that they alone sig-
nify CG lightning has occurred or may occur. Currently,
the NWS is not required to provide information regarding
CG lightning to the public. Instead, the public mostly re-
lies on hearing thunder or seeing a lightning flash before
taking shelter. The large number of deaths and injuries
that occurs annually from CG lightning indicates that this
alone is not sufficient.

In most storms, the first in-cloud (IC) flash occurred
before the first CG flash (Cummins and Murphy 2009).
Studies, such as MacGorman et al. (2011), have shown
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the first IC flash typically precedes the first CG flashes
by tens of minutes, providing lead time to CG activity.
However, it was not guaranteed that the first IC flash was
correctly identified, nor that the timing was consistent be-
tween storms. Additionally, it appeared the lead time was
partially dependent on the region. For example, the timing
in the high plains in the United States was much longer
than the time between flashes for north Texas or Okla-
homa due to higher cloud bases of storms (MacGorman
et al. 2011). This added a whole other layer of com-
plexity to using the times between flashes to predict when
CG lightning struck on its own, thus, leading toward the
need for a more detailed system. Through the early 2000s
no systematic-automated lightning forecasting algorithms
have been routinely utilized by government or private sec-
tor (Mosier et al. 2011). However, algorithms are under
development and there is hope to put this system into op-
erational use in future years (Cartier cited 2017).

Machine Learning (ML) combines a large amount of
different types of data into one model in order to train
a system to detect patterns and relationships of a certain
phenomenon (Gagne et al. 2017). Meyer et al. (2017)
used a Random Forest, which utilized a trained dataset
that included a variety of data to develop a CG lightning
probabilistic algorithm. The model was trained using a
variety of merged radar, environmental and lightning data
across the Contiguous United States over a one-year pe-
riod. The properties of more than 1 million storm samples
were recorded and subsets of the data were used to create
multiple decision trees providing a “yes” or “no” answer
if the storm produced CG lightning (Meyer et al. 2017).
Data that is similar to each other should fall into the same
nodes of the trees in a random forest, which provides an in-
dication of which variables were important for prediction,
training the model (Liaw and Wiener 2001). Meyer et al.
(2017) found that lightning data (i.e., if a storm is already
producing lightning) to be the top variables for prediction
followed by radar data such as maximum reflectivity val-
ues in the mixed phase (between 0 and -40◦C, Fig. 2). The
300 trees in the Meyer et al. (2017) algorithm are collected
into one large dataset (the Random Forest) providing the
probabilistic likelihood of any storm to produce CG light-
ning by taking the number of yes’s and dividing it by the
total number of trees.

Progressing toward a more developed warning system,
Probabilistic Hazard Information (PHI) is currently being
developed and utilized in order to provide warnings of se-
vere events that follow along with the event, rather than
staying stagnant around one area (Karstens et al. 2015).
A prototype PHI tool has been tested annually by NWS
forecasters in the National Oceanic and Atmospheric Ad-
ministration (NOAA) Hazardous Weather Testbed (HWT)
since 2015 (Karstens et al. 2015). Forecasters evaluate the
use of PHI during real time events in which they created
probabilistic forecasts for events such as wind, hail, and

tornadoes (Karstens et al. 2015). The output from the fore-
casters, PHI grids provide more information about storm
hazards sooner with more updates than the current severe
thunderstorm and tornado warning paradigm. This offers a
mixture of both human elements and automated machine
elements in a system. When running through cases, the
forecasters were given the guidance of the automated ob-
jects generated by the ML algorithm as well as additional
information such as radar (Karstens et al. 2018). In the
2017 experiment, there were four levels of automation
that could be issued for the objects by the forecasters: (1)
completely forecaster made, (2) partially automated with
a forecaster geometry, (3) partially automated with the au-
tomated geometry, or (4) completely automated (Karstens
et al. 2018). Karstens et al. (2018) found the prototype
performed relatively well, however, noted a need for bet-
ter verification methods in order to get a better idea of how
the automated system was performing.

Emergency managers and other end-users were able to
review the resulting PHI grids from forecasters within an
experimental display called the Enhanced Data Display
(EDD) (Karstens et al. 2018). The end-users made deci-
sions based on the cases and PHI grids, providing insight
of their opinions of the PHI objects and the system overall.
The opinions of these users is important because if the PHI
is planned to be used operationally in the future, it must be
usable by those beyond the forecasters.

The PHI prototype is part of a larger project: the Fore-
casting a Continuum of Environmental Threats (FACETs),
currently being developed by the NSSL. This project is
working toward providing clear and informative data to
the public regarding warnings of severe events, such as
tornados and hail, and non-severe events like CG lightning
(National Severe Storms Laboratory cited 2018). FACETs
will make use of polygons and grid-based probabilities of
a severe event as created by the PHI tool (National Severe
Storms Laboratory cited 2018). This will allow for the
warning to be specific to a certain area and for the public
to have a better idea of their chance of receiving severe
weather.

The purpose of this paper is to review the displaced real-
time lightning case from the 2017 HWT experiment that
was run by all forecasters within the PHI tool Calhoun
et al. (2018) and determine whether the forecasters added
value to the automated system alone. The verification of
both the automated system’s and forecasters run through a
case study allowed for an examination of the systems abil-
ity to successfully forecast CG lightning, something that
previous studies have lacked. It will explain whether the
forecasters added value to the automated system and if so,
which areas the forecasters added the most value to the
system. By doing so, these areas of value could be picked
out and used to enhance the automated system for poten-
tial operational use.
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FIG. 1. Melbourne County Warning Area, Florida

2. Data and Methods

a. Event Background: 1 Sept 2016

All forecasters in the 2017 participated in the same
study using the same radar, lightning data and automated
objects from the Meyer et al. (2017) probabilistic algo-
rithm. This case chosen was from 1 Sept 2016 in the Mel-
bourne (MLB) County Warning Area in Florida as Hurri-
cane Hermine made landfall on the west coast of Florida
(Fig. 1). Hurricane Hermine was a category 1 hurri-
cane that moved across western Florida, Georgia, South
Carolina, and North Carolina. Hermine became a tropi-
cal storm by 0600 UTC on 31 Aug and intensified over
the warm waters of eastern Gulf of Mexico as it moved
north-northeastward and northeastward. By 1 Sept, an
eye was seen in visible imagery and Hermine reached
hurricane intensity around 1800 UTC south-southwest of
Apalachicola, Florida with maximum winds of 65 kt (Berg
2017). This period of near peak intensity just prior to land-
fall was encapsulated in the case study period, which took
place from 1755 to 1955 UTC. Hermine produced a total
of ten tornadoes with two EF-0 tornadoes on the evening
of September 1st within the MLB county warning area:
one in Winter Garden in Orange County and the other in
Lake County (Berg 2017). A large number of CG light-
ning flashes also struck during this event. This case was
found to be particularly difficult by the forecaster partic-
ipants; Hermine likely assisted in making it challenging
for the forecasters and automated system as land-falling
Tropical Cyclones are rare events.

FIG. 2. Important variables in the ML algorithm (Meyer et al. 2017)

b. Machine Learning and Creation of Automated Objects

The ML algorithm was able to determine which vari-
ables and conditions tended to precede CG lightning. The
features that were the most important in the ML algo-
rithm were the 15 minute CG lightning strike data from
the National Lightning Detection Network (NLDN), 15
minute IC lightning data from Earth Networks, Inc (ENI),
IC flashes per area, and 2 minute IC lightning data from
ENI respectively (Fig. 2). In real-time, when the sys-
tem detected that the conditions were occurring, the algo-
rithm predicted whether or not CG lightning would strike
from the storms. The automated objects were generated
from this algorithm, producing polygons around the areas
where it predicted CG lightning would occur for specific
case studies.

c. Creation of Forecaster Objects

Nine NWS forecasters of varying skill and expertise all
participated in the 1 Sept 2016 case study in order to de-
termine if the forecasters added value to the automated
system. All forecasters had the automated objects from
the random forest algorithm as a ‘first guess’ as they uti-
lized the PHI tool. Similar to Karstens et al. (2018), the
forecasters had choices to either leave the automated ob-
jects that were previously created by the system, modify
the automated objects, or manually create their own ob-
jects around areas where they predicted lightning would
occur that the automated system might have missed, cor-
responding to the levels of modification provided by the
PHI tool. In addition to adjusting and creating objects, the
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forecasters also had the ability to add discussion regarding
what they saw in the model, such as providing information
about the specific locations of CG lightning from the Na-
tional Lightning Detection Network (NLDN) and trends
in the lightning activity associated with an object. They
also included a percentage to each storm which gave their
confidence of that storm’s ability to produce CG lightning.

d. National Lightning Detection Network (NLDN)

The NLDN lightning data was used to determine the
specific CG lightning locations for forecast verification
(Vaisala cited 2018). NLDN data was collected through
a system of antennas that were located across the United
States. (Hondl and Eilts 1994). This data gave the location
of CG lightning strikes around the United States. The CG
flashes that fell within the MLB warning area and during
the time of the case were recorded. The automated and
forecaster objects were compared to the lightning data in
order to determine how accurately they forecasted where
lightning struck during the simulation.

e. Object Verification

As the automated objects were generated by the ML al-
gorithm and additional objects were created by the fore-
casters, verification of the objects is necessary to deter-
mine how accurate the automated system and forecasters
were at predicting CG lightning. By using the NLDN data
to determine where CG lightning flashes occurred during
the time of the case, a program was developed to count the
number of flashes that were successfully forecasted by the
objects.

The objects that were included in the verification were
those that fell between 1755 and 1955 Coordinated Uni-
versal Time (UTC), the period of forecaster created ob-
jects in the case study. Only the storms within the MLB
area including a buffer with an average of around 45 miles
off the Atlantic coast from the warning area were consid-
ered. All forecasters began with the automated objects as
a ‘first guess’ to coverage and probabilistic likelihood of
CG activity. Each of the following were included in cal-
culating the verification statistics for each forecaster (1)
automated objects that forecasters chose not to modify
(and did not block from end-users), (2) automated objects
that forecasters modified, and (3) newly created objects
by forecasters. If forecasters modified an automated ob-
ject, the original automated objects were removed from
the verification dataset by matching the IDs and start time
of the modified objects as some objects were modified for
only part of that objects existence. The valid CG flashes
for each object were determined as occurring between the
start time of that object and one minute after the start time.
All datasets were converted to epoch time to assist with the
validation process. The data was examined in two ways:

storm verification and lightning verification. Storm veri-
fication was whether the storms created successfully fore-
casted the occurrence of CG lightning. Lightning verifica-
tion was if the CG flashes was within a storm object (hit)
or outside any storm objects (miss).

For the storm verification, four categories were used:
Hit, False Alarm, Correct Null, and Miss (Wilks 2005).
Each object, for its duration, were sorted into these four
categories at each threshold from 0 % to 100 % in 10 %
increments. The duration of the automated objects were
60 minutes and those of the forecaster objects were de-
pendent on forecaster choice. A storm was recorded as a
Hit if it had at least one CG flash and the probability of the
storm was above the given threshold. A storm was sorted
as a False Alarm if it had no CG flashes but had a prob-
ability above the threshold. A Correct Null was recorded
when the storm had no CG flashes and the probability of
the storm was below the threshold. Finally, a Miss was
recorded when there was at least one CG flash inside the
storm, but the storms probability was below the threshold.

With the lightning verification, CG flashes were scored
during the duration of each object using the same thresh-
olds as in the storm verification. Each flash was organized
into one of two categories: Hit or Miss. If the CG flash
was inside a storm and the storms probability was above
the threshold, a hit was recorded. If the CG flash was not
inside a storm it was recorded as Miss 1. A second type
of miss was defined when the CG flash was inside a storm
but the storms probability was below the threshold: Miss
2.

These verification values were organized using a 2x2
Contingency Table in two sections: event forecasted and
event observed (Fig. 3). Each section was further broken
down into yes or no, which created four positions for the
data to be organized into (Roebber 2009). A Hit was in
the position which referred to when an event was both ob-
served and forecasted, a False Alarm was located where an
event was forecasted but not observed, a Miss was in the
position when the event was observed and not forecasted,
and a Correct Null was in the spot which referred to an
event that was both not forecasted and not observed. For
storm verification, the table was viewed by starting at the
event observed section and the lightning verification was
approached from the event observed section.

FIG. 3. 2x2 Contingency Table for Storm and Lightning Verification
Values
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f. Skill Score

Using the values from the storm and CG lightning ver-
ifications, the skill scores of each forecaster and the au-
tomated system were calculated. The skill scores in-
cluded the False Alarm Ratio (FAR), Critical Success In-
dex (CSI), and Probability of Detection (POD). The FAR
provides the proportion of forecasted storms that failed to
actually produce lightning (Gremillion and Orville 1999).
The equation used to calculate FAR was:

FAR =
FalseAlarm

Hit +FalseAlarm

The CSI, sometimes referred to as threat score, provides
the correctly forecasted storms divided by the sum of the
total number of forecasted storms and the number of in-
correctly forecasted storms that did not actually occur
(Gremillion and Orville 1999). The equation used to cal-
culate CSI was:

CSI =
Hit

Hit +FalseAlarm+Miss

The POD provides the chance that the CG lightning flashes
would be forecasted if the CG flashes actually occurred
(Gremillion and Orville 1999). The equation used to cal-
culate POD was:

POD =
Hit

Hit +Miss

Each of these values were calculated for each threshold, 0
% to 100 %, in 10 % intervals. The FAR and CSI were cal-
culated using the storm verification and the POD used the
lightning verification values. The use of these calculations
helped to determine, overall, how accurate the forecasting
model actually was (Gagne et al. 2017) for the automated
system and the forecasters.

3. Results

FAR, CSI, and POD are plotted together for each of the
forecasters and the automated system to provide a compar-
ison across all forecasters and the automation for the event
(Fig. 4). For each individual, the threshold was on the x-
axis at 10 % intervals and the skill scores were plotted on
the y-axis with values from 0 to 1. All of the forecast-
ers were able to increase the POD above the automated
system alone. Out of the forecasters at the 0 % threshold
level, Forecaster 1 had the lowest POD and Forecaster 4
had the highest POD. The FAR and CSI values were more
consistent between the automated system and the forecast-
ers.

Bar graphs were constructed to show the variability of
the Hit, False Alarm, Correct Null, and Miss categories for
the storm verification for each forecaster and automation.
The threshold was plotted on the x-axis, similarly to the

line graphs, and the number of storms for each category
was plotted on the y-axis. Four bars, representing each of
the categories, were created for each threshold level. At
the 0 % threshold level, Forecaster 1 had the most hits and
Forecaster 6 had the least amount of hits. Only forecasters
1 and 4 had more hits than the automated system, how-
ever, the forecasters all had fewer false alarms than the
automated system.

Bar Graphs were also generated to show the variability
of Hits and Misses for the lightning verification. Graphs
showing the misses overall and graphs splitting the misses
into the two different options for misses were created, re-
vealing how many Miss 1’ s and Miss 2’ s were present.
Overall, all the forecasters had more hits than the auto-
mated system. At the 0 % threshold level, Forecaster 4
had the most hits and Forecaster 1 had the least amount
of hits. The automated system had the most of Miss 1,
and Forecaster 1 followed as the forecaster with the most
of Miss 1. The 20 % threshold level is the first threshold
level where Miss 2 was present, for which, Forecaster 6
had the most.

A performance diagram, also known as a Roebber dia-
gram, compared how successful the automated system and
each forecaster were at predicting CG lightning relative
to each other. This performance diagram plots the POD,
FAR, and CSI as well as the bias of the verification, all
four values geometrically related to each other (Roebber
2009). The POD is plotted along the y-axis and the Fre-
quency of Hits (FOH), otherwise known as the Success
Ratio, is plotted on the x-axis. The value of the FOH is 1-
FAR (Roebber 2009). CSI values are plotted as curves on
the diagram from 0.1 to 0.4. The biases are each plotted
as straight, dashed lines on the diagram, from 0.1 to 10.
Each object was plotted as a point based on the FAR and
POD of that object. The 0 % threshold was used so that all
of the objects would be valid for each individual. Those
located in the middle diagonal, where the bias is equal to
1, were unbiased and as they approached the upper-right
corner of the diagram the forecasts were more accurate
(Roebber 2009).

The performance diagram generated for the automated
system and forecasters reveals that the forecasters did add
value to the automated system (Fig. 5). The ranges of
the axes for this figure are from 0.6 to 1 for the FOH and
0.8 to 1 for the POD to make it easier to see where the
automation and forecasters fall within the diagram. All of
the forecasters improved the POD of the automated system
and most of the forecasters also decreased the overall FAR.
Forecaster 1 was located closest to the upper-right corner
of the performance diagram and thus was revealed to have
the most successful POD and FOH performance out of all
of the individuals; however, this does not account for areal
coverage of the storm objects.

A reliability diagram was also constructed in order to
view the automated system and forecasters abilities at
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FIG. 4. Skill Score values of FAR (blue line), CSI (green line), and POD (pink line) of the nine forecasters and the automation

forecasting CG lightning across the entire probabilistic
range (Fig. 6). The dashed grey line represents an ide-
alized perfectly reliable forecast; anything above this line
is under-forecasted and anything below the line is over-
forecasted. The thick, black line represents the automated
system and rainbow colors, the forecasters. The automated
system and forecasters all under-forecasted for most of the
thresholds, but tended to over-forecast around the 50 %

and 90 % thresholds. The forecasters improved on the re-
liability at the 50 % and 70 % thresholds, but many also
had greater difficulty than the automation at lower proba-
bilities, under-forecasting more often.

A bar graph, separated by each forecaster and the auto-
mated system, was also plotted in the bottom right of the
diagram in order to show how many objects were fore-
casted at each threshold. Overall, this shows that the
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FIG. 5. Performance Diagram of Automation and Forecasters

FIG. 6. Reliability Diagram of Forecasters and Automation
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forecasters forecasted a similar number of objects at each
threshold as the automated system, however, Forecaster
2 and Forecaster 5 appear to have a smaller number of
objects at most of the thresholds than the other forecast-
ers and automation does and could be considered out-
liers compared to the others. The 30 % threshold has a
much greater number of objects than the other thresholds.
The automated system forecasted the most objects at this
threshold and all of the forecasters likely followed suit
when using the automation as a guidance, thus allowing
this threshold to have the most objects overall. Currently
there is no definite answer to why the 30 % threshold was
forecasted at so much, but a possible explanation could
have to do with the lack of experience of the system to
forecast tropical events.

In order to determine how the forecasters added value to
the automated system, the data from each forecaster object
was examined. Forecasters could modify many aspects of
the automated objects including: Speed, Direction, Dis-
cussion, Severity (the frequency of lightning), the object
shape, and probability. Looking at each characteristic, the
number of modified automated objects that were modified
for an individual characteristic were tallied (Fig. 7). The
type with the most modifications among the automated
objects was the discussion of the objects, forecasters of-
ten provided details on individual cities and if they were
expecting the storm to strengthen or weaken here. Other
characteristics that were most frequently modified was the
duration of the storms CG lightning, the probability of the
CG lightning, and the severity (or frequency) of CG light-
ning. The qualities that were not modified as often was the
object itself, the warning threshold, impacts, confidence,
actions, and warning type of the CG lightning.

Modifications of the characteristics were binned by
forecasters to determine if certain characteristics were
only changed by a few of the forecasters or if it was a
quality that all the forecasters felt was important to ad-
just (Fig. 7). The discussion, duration, probability, and
severity of the CG lightning of the storms were adjusted
by all the forecasters while the alert level, warning thresh-
old, impacts, confidence, and actions of the objects were
only modified by four of the nine forecasters. Forecaster 8
made the largest number of modifications of the automated
objects (with 343 changes) and Forecaster 3 made the
fewest modifications (with only 12 modifications across
the entire event).

4. Discussion

The case held a lot of importance due to both the area
where it took place and the challenge that the case pre-
sented. The MLB area includes many outdoor tourist at-
tractions such as Disney World, Universal Studios, and
Sea World in Orlando, Florida. The warning area also

FIG. 7. Graph of modifications made by forecasters separated by fore-
caster

contains Cape Canaveral, where the Kennedy Space Cen-
ter is located, and many beaches along the Atlantic coast
of Florida. These locations are typically popular which
led to the potential for many people to be outdoors and ex-
posed to CG lightning when the storms hit. The case also
took place during Hurricane Hermine which was mostly
affecting the Western coast of Florida. As discussed in
the event background, the presence of Hermine made this
case rather difficult for both the automation (since this is a
rare event) and the forecasters. The difficulty of the case,
however, was part of the motivation for running the system
through it in order to see how the automated system and
the forecasters performed with a challenge.

Several limitations occurred over the course of the re-
search. Only nine forecasters came and ran through the
case, which is a small sample size. Thus, the data could
easily be skewed and it may be difficult to get strong re-
sults. Also, in the performance diagram, the only value
that wasnt considered when calculating the skill scores
was the Correct Null values from the storm verification.
However, the failure to include the Correct Null values did
not hinder the ability of the diagram to accurately show
the performance, but actually had the potential to enhance
the diagram by excluding the excess events that were not
forecasted and did not occur (Roebber 2009).

Another limitation could be that halfway through the
case, Forecaster 1 became overwhelmed by the numerous
amount of objects present and began to focus on only the
top half of the MLB county warning area. This meant
the automated system took over for the bottom half of
the region for the remaining half of the case for this fore-
caster. No other forecaster did this during their case, so
this change for Forecaster 1 could affect the results. Ac-
cording to the performance diagram, Forecaster 1 had the
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most successful performance with predicting CG light-
ning, which indicates that a human-machine mix in which
the forecaster is not doing as much work with the auto-
mated objects could have the potential to work well.

Broadcasters and emergency managers were brought in
to run a simulation of the case with the EDD, which used
the PHI objects from a forecasters case. The forecasters
provided useful information for these end users, such as
the added discussion to the objects, that the automated sys-
tem alone would not have. This information gave the end
users a better idea of what was occurring with the objects
and could help them pick out which objects may be more
important to pay attention to, especially if there was a mul-
titude of objects at one time during the case. Many of the
broadcasters tended to think that the lightning objects were
confusing and claimed they likely would not share them on
air due to lower level of importance in comparison to the
threat of tornadoes or severe storms. However, by having
the discussion and other qualities about the objects, they
had some guidance of when to warn certain areas about
CG lightning. The emergency managers gave a positive
response to the system and claimed that they wanted the
product in operational use as soon as possible (Meyer et al.
2017). The end users provided some insight on how fore-
casters were adding value to the automated system, point-
ing out the discussion as an important component that the
forecasters supply.

When looking at the modifications that were made by
the forecasters, it was interesting to view which forecast-
ers made the most and least modifications and how those
forecasters performed relative to each other. Forecaster
8 made the most modifications of the automated objects
while Forecaster 3 made the least amount of modifica-
tions. When looking at the performance diagram, Fore-
caster 8 had a slightly higher POD and a higher FOH than
Forecaster 3, indicating that the modifications did make an
impact in helping the success of predicting CG lightning.

An automated system alone may not be completely
trustworthy to a forecaster because of possible detection
errors or misuse of the system that may have occurred
in the past (Karstens et al. 2018). However, a system in
which the forecaster has to manually create and issue all
the objects themselves is unreasonable; this would waste a
lot of time, often which the forecaster does not have. The
forecasters who ran through the PHI prototype found that
task of modifying and creating polygons based off the au-
tomated system was already quite tedious. They felt as
though they were spending too much time with the objects
and if they had to do the task along with their regular work,
especially during a time with a lot of severe events occur-
ring, there would be too much for them to be in charge
of alone. This is where determining where the forecasters
added value to the automated system came in handy.

All of the forecasters improved the automated system in
terms of performance (Fig. 5). The bar graph of the mod-

ifications revealed that the forecasters provided the most
value with the added discussion of the objects as well as
with changing the duration, probability, and severity of
the CG lightning polygons. An option for the forecast-
ers could be to let the automated system be the baseline
and create the polygons in an area, and they could come in
and add discussion for the objects and quickly edit these
qualities that were modified the most during the case. This
would allow the forecasters to spend less time with the ob-
jects, but still let them edit the objects so they are not rely-
ing on only the automated system, thus providing the mix
of both human and machine elements into one system.

Another solution would be to continue to improve the
automated systems ability at forecasting CG lightning. For
example, adding a buffer to the automated objects to in-
crease the area the objects cover would increase the POD
of the automated system. The objects would likely catch
more of the CG lightning strikes and thus miss less of
the CG flashes. However, increasing the area of the ob-
jects would potentially make the model more difficult to
use operationally. The area could look messy with many
large objects and become confusing for end users viewing
the objects. Some broadcasters viewed many large objects
from individual forecasters, making the PHI system ap-
pear cluttered and not truly discriminating among areas
with this highest threat. This served as a motive for why
some chose not to use the lightning information at all when
running through the simulation. There becomes a tradeoff
between having a higher POD value and better performing
system and having a more complicated system for the end
users. However, with more research there could be other
enhancements that would improve the performance of the
automated system.

5. Conclusion

The automated system, while not perfect on its own,
provided a baseline to the forecasters when forecasting CG
lightning. The forecasters added value to the automated
system and improved the automated objects through mod-
ifying the qualities such as the discussion and duration of
the storms. This project provided an example of perfor-
mance for this automated system if it were put into opera-
tional use right now. It shows which aspects of the objects
the forecasters would likely need to focus on when using
the automated system as well as which areas they would
not need to concentrate on so they do not spend too much
time with the system, but still produce accurate forecasts
of CG lightning.

We suggest that additional improvements be made to
the automated system in order to enhance its success of
forecasting CG lightning following the guidance of where
forecasters added value. This could allow the system to
do a better job on its own, thus lessening the need of the
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forecasters to focus on the automated system and allow-
ing them to continue their work where they feel is the
most important. Eventually the automated system could
be put into operational use and CG lightning could offi-
cially be predicted by forecasters, particularly as the NWS
stresses the importance of Impact Decision Support Ser-
vices (IDSS). The information could also potentially work
towards the development of a CG lightning warning sys-
tem in which physical warnings are issued to areas regard-
ing if they have a high risk of lightning that could affect
their area.
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