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ABSTRACT

Flash flooding can cause hundreds of deaths and billions of dollars worth of dam-
age each year. In 2015, there were 176 fatalities in the United States, Puerto Rico, Guam
and Virgin Islands, which is roughly five times higher compared to those caused by torna-
does. The Multi-Radar Multi-Sensor (MRMS) system, which generates a 1-km grid of
quantitative precipitation estimates (QPE), can provide insight to forecasters when issu-
ing flash flood warnings. The most accurate data are needed for the high spatial resolu-
tion of MRMS. Rain gauges are treated as ground truth and can provide the most accu-
rate verification of QPE. The most well-known gauge network is the 838 rain gauges from
Automated Surface Observing System (ASOS) stations. It is a standard to accept that
QPE values can vary from collocated observed gauge values; however, location errors of
the rain gauge can have an impact on the verification of MRMS QPE. Using Google
Earth, it is determined that ASOS location errors varied from less than 3 m to 80,163 m.
The locations errors resulted in 79.31% of ASOS stations in the CONUS to be in a differ-
ent MRMS QPE grid box. Of those stations, 19.44% were found more than 1 km away
from the expected locations. QPE values for the new and old locations were compared to
observed precipitation data with the correlation increasing from 0.777 to 0.810. This com-
parison highlights the need to update rain gauge metadata to improve the verification of

radar-based QPE and other hydrometeorological products.

1. INTRODUCTION

Surface observations are critical for quick
basic analysis of low-level weather phenomena.
There are several combinations of surface instru-
mentation, including the Automated Surface Ob-
serving System (ASOS) stations, that collect sur-
face observation data. There are thousands of
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these stations in the continental United States
(CONUS). ASOS stations include a wide variety of
instrumentation that collect measurements of vari-
ables crucial for verification of forecasts and mete-
orological numerical models. One of these instru-
ments at the ASOS station is the rain gauge. The
accuracy and importance of this data is beneficial
for a wide range of meteorological and hydrologic
applications, including detection of flash flood-pro-
ducing rainfall.

The National Weather Service (NWS) rec-
orded 176 flood fatalities in the United States,
Puerto Rico, Guam and Virgin Islands in 2015
(http://www.nws.noaa.gov/os/hazstats.shtml).
Weather fatalities related to flooding were nearly
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five times higher compared to those attributed to
tornadoes in 2015. From 1969 to 1981, 93% of
flash flood deaths were due to drowning, and of
those, 42% were vehicle related (French et al.
1983). The 30-year average number of fatalities
attributed to flooding are second only to those at-
tributed to heat from 1986-2015. Flash flooding
can also have wide repercussions when associ-
ated with property damage. The NWS estimated
that the average 30-year flood loss is almost $8
billion per year (http://www.nws.noaa.gov/hic/in-
dex.shtml).

One of the primary observation tools for pre-
cipitation used in the CONUS is the Next-Genera-
tion Radar (NEXRAD) network. The upgrade of
this system to dual-polarization (dual pol) has sig-
nificantly improved our ability to monitor hydrome-
teors and weather. Dual pol allows the NEXRAD
network to emit and receive signals using horizon-
tal and vertical polarization, thus allowing more
precise measurements of hydrometeors in the at-
mosphere compared to traditional radar technol-
ogy (Li and Mecikalski 2012).

The primary mission of the NWS is to protect
life and property from weather-related hazards. In
some respects, this can be dependent on data ac-
curacy. One tool available to NWS forecasters is

the Multi-Radar Multi-Sensor (MRMS) system,
which provides quantitative precipitation estimates
(QPE) in real time. MRMS has been operational
since September 2014 and has been running real
time at the National Severe Storms Laboratory
(NSSL) since June 2006 (Qi et al. 2016). MRMS
processes data from nearly 180 operational radars
to create a three-dimensional seamless radar mo-
saic at a high temporal (2 min) and spatial (1 km)
resolution (Zhang et al. 2016). QPE is determined
by dynamically varying reflectivity-rain rate (Z-R)
relationships that are applied to each grid box in
MRMS (Qi et al. 2016).

Errors in the QPE could alter how a forecaster
issues flash flood warnings and in turn affects how
the general public perceives the threat. The high
resolution of MRMS has superior coverage in ar-
eas with sparse surface observation data and
more frequent updates; however, this fine spatial
resolution can also be problematic. The data that
goes into the process of creating the QPE needs
to be accurate and reliable.

Thousands of gauge sites are ingested and
processed by MRMS. The vast majority located in
the eastern CONUS and along the West Coast;
the distribution of these gauges are sparse in the
mountainous regions of the western CONUS
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Depicts the metadata location of the NYC ASOS station in a building in Manhattan, New York. Pictures (a) and (b)
are what the authors considered as atypical. (c) Depicts the metadata location of the GRR ASOS station at the
NWS WFO in Grand Rapids, Michigan. (d) Depicts the metadata location of the ALB ASOS station at the Albany
International Airport in Albany, New York. Pictures (c) and (d) are what the authors considered as typical.

(Qi et al. 2016). Verification and data accuracy us-
ing gauges is only as good as the instrumentation
and observations. Even with the advancement of
technology, inaccuracies of rain gauges persist
and are well documented. Three general sources
of error have been identified for rain gauges: sys-
tematic spatial and altitudinal variations, system-
atic measurement error, and random measure-
ment and sampling errors (Dreaver and
Hutchnson 1974, Freimund 1992; Goodrich et al.
1995). The blockage of the orifice on the rain
gauges can lead to precipitation underestimates,
or more drastically, no measurable precipitation
(Sevruk 2005; Sieck et al. 2007; Martinaitis et al.
2015). Another common data accuracy problem
with rain gauges is undercatch; which is the pro-
cess of losses induced by wind and is more promi-
nent with snowfall (Chubb et al. 2015). The heated
tipping bucket is the rain gauge used at the major-
ity of ASOS stations and can cause enhanced
evaporation with regards to frozen precipitation.
These type of gauges record nearly 24% less pre-
cipitation due to enhanced evaporation (Savina et
al. 2012). Tipping bucket rain gauges also have
the tendency of splash out and loss of liquid during
intense rainfall rates (Parsons 1941). Evaporation
and/or sublimation on rain gauge siding and un-
dercatch can cause underestimations. Groisman
and Legates (1994) suggested that these errors
can cause estimated bias that vary from 5% to
40% with higher bias in the winter. An additional
difficulty with solid precipitation is timely measure-
ments of liquid equivalency due to slow fall speeds
between when radar beams aloft detects the pre-
cipitation and when it reaches the surface (Goodi-
son et al. 1998; Savina et al. 2012).

To combat some of these problems, Qi et al.
(2016) came up with a framework to categorize
rain gauges with quality control (QC) flags with

values ranging from -2 to 6 with each value corre-
sponding to a specific designation (Table 1). The

QC flag allows the user to filter potential suspect

gauge measurements.

Radar-based QPE also has inherent sources
of uncertainty. Hogan (1990) mentions that the lo-
cation of a rain gauge can play a larger role com-
pared to the overall number of rain gauges in re-
ducing errors in precipitation estimation for multi-
sensor QPE methods. In a case study, Rossa et
al. (2010) demonstrated that the maximum radar-
based QPE and the maximum observed rainfall lo-
cations did not coincide with each other. The
standard is to assume that the gauge measure-
ment is accurate (i.e., “ground truth”) while the
QPE contains the error; however, errors in rain
gauge locations could alter the verification process
between rain gauges and radar-based QPE.

Prior to 2013, the verification of radar and sat-
ellite QPE in MRMS was based on the Hydromete-
orological Automated Data System (HADS) list of
rain gauge stations across the CONUS. The
HADS list is maintained and distributed by the
NWS Office of Hydrology. Numerous automated
gauge networks were not included in HADS, but
were available from other sources such as the Na-
tional Operational Hydrologic Remote

QC flag QC flag designation Retained for MRMS use
-2 Out time window No
-1 Unchecked Yes
0 Pass Yes
1 False precip No
2 False zero No
3 QOutlier high No
4 Outlier low No
5 Frozen No
6 Suspect No

Table 1: QC flag for gauges used in MRMS. From
Qi et al. 2016.
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Sensing Center (NOHRSC). In 2013, MRMS de-
velopers attempted to produce a master gauge list
by combining the HADS and NOHRSC lists. This
process revealed metadata errors including: sta-
tion ID mismatches, mismatches in latitude and
longitude values, and numerous site duplications.
An evaluation of rain gauge metadata locations
would establish better verification for radar-based
QPE in regards to current and future hydrometeor-
ological products.

The objective of this study is to investigate and
evaluate the impact of rain gauge metadata loca-
tion errors on the perceived skill of MRMS QPE
and to determine the current state of metadata ac-
curacy.

2. DATA AND METHODOLOGY

The hourly MRMS QPE dataset that is used in
this study covers 0000 UTC 1 January 2015 to
2300 UTC 31 December 2015 and is obtained
from the National Centers for Environmental Pre-
diction (NCEP). The MRMS domain extends from
-130° to -65° longitude and from 55° to 20° lati-
tude. The 838 rain gauges were evaluated in this
study are from the ASOS station network (Fig. 1).
The original ASOS station metadata for these 838
sites came primarily from NOHRSC; however,
some may be based on the NWS Location Identifi-
ers (NWSLI) database if they were not included in
the original NOHRSC list. While most metadata
ASOS station locations can be considered reason-
ably accurate, there are several metadata station
locations that can be considered erroneous (e.g.,
Fig. 2). The coordinate system used in Google
Earth and to record the ASOS station locations is
the World Geodetic System of 1984 datum.

In order to compute the approximate location
errors in the ASOS station metadata, the actual lo-
cations of the 838 ASOS stations needed to be
determined and recorded. The ASOS station IDs,
latitudes, and longitudes were encoded into a KMZ
file that was imported into Google Earth. The
Google Earth satellite imagery was then used to

LQPE2 - (Lgn, QpEl)zl}l/z

locate the true location of each ASOS station, and
the new latitude and longitude values were rec-
orded. As the quality of the satellite imagery varied
per location, the coordinates for the actual location
of the ASOS station were based on the power
supply box for the ASOS station.

The distance difference between the actual
location and metadata location was determined by
the Haversine Formula (1) and (2) since it pro-
vides the great circle distance between two coordi-
nate points on a sphere in meters. In (2), Lat,,
Lat,, Lon,, and Lon, are the new latitude, old lati-
tude, new longitude, and old longitude, respec-
tively. Statistical analysis was done on the dis-
tance data and include minimum, first quartile, me-
dian, third quartile, and maximum values for the
distance to demonstrate the variability between
the old and new ASOS locations.

Before any statistical analysis was performed
on the new dataset, the authors set criteria that all
data points must meet. For example, one such re-
quirement is, if both the old and new QPE value
both equaled zero, that data point would be ig-
nored. The second requirement is that the gauge
QC flag must be either -1 or 0 for the data point to
be considered in any further analysis. The third
and final requirement that had to be met was if the
old and new ASOS location were situated within
the same QPE grid box that station would be ig-
nored. From here, two separate datasets were
created that included both above criteria with the
third requirement being absent in one of the two

2y ObsRain
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Fig. 3: Box and whisker plots comparing the dis-
tances of the two datasets: allowing and not allow-
ing same QPE grid point stations with the box and
whisker plot with all the distances.

Qﬁlsloc-\;ﬁ ls dss:i‘:t Min Ql  Median Q3  Max
Yes 28 2236 4554 7831 80162.6
No 28 2298 4752 8610 80162.6
Al 28 2233 4553 7892 80162.6

Table 2: Distance statistics in meters for the ASOS
stations in CONUS shown in Fig. 3.

datasets. The notion of creating two different da-
tasets using only the first two requirements and
only incorporating the third requirement in one of
the datasets is to compare how the stations that
remain in the same QPE grid box influence the
overall statistical analysis of the research.

For the first requirement, the authors wanted
to see the difference in QPE values based on the
location error; the statistical weight of zero values
for both old and new QPE will be much greater
compared to nonzero QPE values due to the natu-
rally sparse nature of hourly precipitation data. For
the second requirement, according to Qi et al.
(2016), a QC flag with a value of -1 and 0 are re-
tained in MRMS, which represent gauges either
passing all QC checks or being located in areas
where the QC check could not be performed; thus
gauge measurements flagged as suspect for any
reason were excluded. The third requirement is
designed to alleviate the dataset of stations that
did not have location errors large enough to move
them to a different QPE grid box.

Two datasets were formed that resulted in 648
and 798 ASOS stations. The dataset containing
798 ASOS stations represents the rain gauges
that resulted from running Python script without

any additional requirement; while, the dataset that
contains 648 stations represents the same dataset
with the additional requirement of ignoring the rain
gauges that remain in the same QPE grid box.
The datasets included 246,504 and 305,725 data
points respectively. From the two datasets, the
same statistical analysis is done to determine the
impact of ASOS location error on radar-based
QPE

Using a Python script, values of MRMS QPE
were determined for both the metadata and newly
found ASOS locations. Each of the two datasets
were exported into separate text files to streamline
the statistical analysis. The statistical analysis in-
cluded basic statistics for both new and old QPE:
mean, minimum, maximum, etc. The authors also
ran analysis to compare the old and new radar-
based QPE values to those observed by the rain
gauge. The gauge versus QPE error analysis in-
cludes: mean bias, mean error, mean absolute er-
ror (MAE), mean square error (MSE), root mean
square error (RMSE), and correlation coefficient
(CC). Equations (3) through (8) were used to com-
pare the observed precipitation by the rain gauge
and the new and old QPE, where ObsRain, QPE,
QPE,, and QPE, are observed gauge precipita-
tion, QPE at the new gauge location, and QPE at
the old gauge location, respectively.

3. RESULTS
3.1 Distance Error Analysis

817 of the 838 ASOS stations were located
and recorded. The remaining 21 stations were not
recovered due to poor satellite imagery quality and
uncertainty. Due to the removal of missing or non-
reporting observations from the original hourly
gauge data prior to analysis, the overall number
ASOS stations for not allowing same QPE grid box
stations and allowing same QPE grid box stations
dropped to 648 and 798 respectively. This repre-
sented 79.31% and 97.67% of the ASOS stations
recovered using Google Earth or 77.33% and
95.23% of the total ASOS stations in CONUS.
From the Haversine Formula (1) and (2), the au-
thors determined that the distance between the
listed locations in the metadata and actual ASOS
locations for both datasets varied from 2.8 m to
80,162.6 m (Table 2). The ASOS identification that
corresponds to the 2.8 m error is ICT and is lo-
cated at the Wichita Mid-Continent Airport in Wich-
ita, Kansas. The minimum distance of 2.8 min
both datasets represents the ideal for data accu-
racy. Over the CONUS, 2.8 m is practically insig-
nificant; however, this distance could be significant
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on the 1-km QPE grid spacing given the possibility
that a small distance change could displace it out
of the original QPE grid box. The ASOS identifica-
tion that corresponds to the approximately 80 km
error is OTM. The metadata location for OTM is
Newton Municipal Airport in Newton, lowa; how-
ever, the actual location of OTM is Ottumwa Re-
gional Airport in Ottumwa, lowa.

The two datasets are statistically different
when considering that one of the datasets has the
different cell requirement and the other does not
(Fig. 3). When including the different cell require-
ment, the first quartile, median, and third quartile
all increased (Table 2). The box and whisker plots
are displayed on a logarithmic scale due to the
high outliers.

3.2 QPE Analysis

There were 246,504 data points in the dataset
that included the different cell requirement and
305,725 data points in the dataset that did not in-
clude the difference grid cell requirement. The dif-
ference in statistics for these two datasets indi-
cates that the different cell requirement had some
effect on both new and old QPE values (Table 3).
The standard deviation increased for both new
and old QPE values when the different cell re-
quirement is in place. The maximum new QPE
value decreased, suggesting that the original max-
imum occurred in the same QPE grid box and thus
was ignored when those points were excluded
from analysis. The mean values also decreased
with the old QPE decreasing .017 mm compared
to a .007 mm decrease in new QPE; thus showing
that rain gauge location can have an impact on
verification of radar-based QPE (Fig. 4). The over-
all number of observations along the one-to-one
line decreased with the exclusion of data points
from the different cell requirement, and thus, decr-

AllowsSame — ope i Q1 Median Q3

QPE Grid Point Max Std Dev  Var Mean

Yes New 0.1 0.5 11 2.2 105.8 3.644 13.280 2.102
Yes Old 0.0 0.5 11 2.2 116.5 3.662 13.408 2.056
No New 0.1 0.5 11 2.2 103.1 3.635 13.213 2.095
No old 0.0 0.4 1.0 2.2 116.5 3.657 13.371 2.039

Table 3: Basic statistical analysis comparing the
new and old QPE values (mm) for the two datasets.

Allows Same Mean Mean

QPE Grid Point Obs vs. Bias Error MAE MSE  RMSE cc
Yes New 0.892 0.227 1.042 4.958 2.227 0.810
Yes Old 0912 0.182 1.083 5.652 2.377 0.784
No New 0.892 0.226 1.043 4.953 2.225 0.810
No Old 0.917 0.170 1.093 5.814 2.411 0.777

Table 4: Error statistical analysis comparing the new
and old QPE values to observed precipitation (mm)
for the two datasets.

eased the linearity between new and old QPE val-
ues.

The comparison between observed precipita-
tion to new and old QPE values are more signifi-
cant to understanding whether rain gauge location
error can have an impact on radar-based QPE
verification. For both datasets, the error analysis
shows that the new rain gauge locations lead to
statistically better QPE verification compared to
the metadata locations (Table 4).

The correlation coefficient increased by 0.026,
without the different cell requirement, and 0.033
with the different cell requirement. The different
cell requirement had a greater effect on the ob-
served precipitation versus old QPE in both da-
tasets compared to the observed precipitation
versus new QPE (Table 4). For both datasets,
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Fig. 4: Density scatter plots comparing: (a) the
new and old QPE in the dataset that allows same
QPE grid point stations and (b) the new and old
QPE in the dataset that does not allow same QPE
grid point stations.
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Allowing: Observed Precip vs. Old QPE
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Fig. 5: Density scatter plots comparing observed precipitation and: (a) the old QPE value in the allowing dataset,
(b) the new QPE value in the allowing dataset, (c) the old QPE value in the not allowing dataset, and (d) the new

QPE value in the not allowing dataset.

the new rain gauge locations eliminated false zero
precipitation estimates (Fig. 5). These values were
denoted as points that are along the horizontal
axis. The “False zero” classification states that the
rain gauge observed measurable water and the ra-
dar-based QPE predicted no measurable precipi-
tation. These false zero precipitation reports were
eliminated when using the new QPE values based
on the new, corrected rain gauge locations. The
comparison between the two different datasets, al-
lowing and not allowing same QPE grid box sta-
tions, showed an increase in linearity between
both new and old QPE versus observed precipita-
tion. The increased linearity between the datasets
was more apparent in the new QPE comparison
with observed precipitation (Table 4). The elimina-
tion of the data points along with the increase in
correlation and linearity was in response to the dif-

ferent cell requirements that ignores ASOS sta-
tions that remain in same QPE grid box.

The comparison between distance and QPE
error highlights the impact of excluding same QPE
grid box locations (Fig. 6). The range and magni-
tude of errors were smaller when comparing the
dataset that includes the different cell requirement
than the dataset that does not include the different
cell requirement. The comparison of new/old QPE
to distance in the individual datasets also suggests
that the actual ASOS locations provide less QPE
error compared to the metadata locations.

4. SUMMARY AND FUTURE WORK
Rain gauges verify the radar-based QPE and

thus provide valuable insight and data for opera-
tional forecasters and researchers. The current
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Fig. 6: Density scatter plots comparing distance to (a) the old QPE value in the allowing dataset, (b) the new QPE
value in the allowing dataset, (c) the old QPE value in the not allowing dataset, and (d) the new QPE value in the
not allowing dataset. ASOS stations ATT, SFO, TOl and OTM are excluded in graphs (a) and (b). ATT, TOIl and

OTM are excluded in graphs (c) and (d).

verification process of QPE assumes that the loca-
tion of rain gauges are accurate; however, of the
838 ASOS stations, 21 of them were not identifia-
ble and/or found on Google Earth. The actual loca-
tions varied from 2.8 m to 80,162.6 m away from
the metadata locations. This location error impacts
the verification of radar-based QPE. 79.31% of the
817 ASOS stations were found to be in a different
QPE grid box. Of those stations, 19.44% were
found more than 1 km away from the expected lo-
cations.

The two final gauge datasets, one that allows
and the other that does not allow same QPE grid
box stations in the statistical analysis, provided a
difference in the verification and correlation be-
tween QPE and observed precipitation. The corre-
lation for the dataset that allows same QPE grid

box stations increased from 0.784 to 0.810; while
the correlation for the dataset that does not allow
same QPE grid box stations increased from 0.777
to 0.810. The implications of this shows that gauge
location errors can impact the QPE verification.
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