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ABSTRACT  

Climate extremes (heavy precipitation, drought, heat waves, storms, etc.) adversely affect 
numerous socioeconomic systems including infrastructure, economy, agriculture, and 
ecosystems. Understanding observed extremes events in the past and being able to determine 
how well climate models capture these will help planning and adaptation to climate stressors. 
The Expert Team on Climate Change and Detection (ETCCDI) have defined and developed a list 
of 27 core climate extreme indices that measure temperature and precipitation. Previous studies 
have compared the reliability of these extremes in a variety of regions but very few have done so 
with a focus on the south-central Untied States. This study uses 11 of the climate extreme indices 
to analyze climate extremes from historical observation-based reanalyses (ERA40, ERA-Interim, 
NCEP1, NCEP2) as well as historical and future projections of 31 global climate models 
(GCMs) from the Couple Model Intercomparison Project Phase 5 (CMIP5). We split the south-
central region into three sub-regions (west-central, south-central and east-central). Results 
indicated that observation-based reanalyses can be significantly different from one another and 
therefore result in varying model biases depending on which reanalysis is used. Model 
performance is dependent on region, season, and extreme indices, and therefore no single model 
was found to be best for all situations. Similar models from the same institutions tend to contain 
similar biases within and across regions. This study also provides future projections that show a 
possible differentiation between the best and worst performing models. 
 
 
1. INTRODUCTION1  
 
Climate extremes such as heavy 
precipitation, heat waves, drought, and 
storms adversely affects numerous 
socioeconomic and biological systems 
including infrastructure, economy, 
agriculture, and ecosystems, among others. 
The south-central region of the United States 
(US) experiences a variety of climate and 
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weather extremes that can damage and strain 
communities. This region is experiencing 
and will continue to experience loss of: 
water, land and energy security, ecosystem 
diversity, agricultural prosperity and 
sustainability, and human adaptability as a 
result of climate change (Shafer et al. 2014).  
 
Climate models simulate various 
components of the earth system including 
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the atmosphere, ocean, biosphere, and 
cryosphere, among others. These models 
simulate historical and future climate 
conditions. Historical simulations, when 
compared with observed past conditions, can 
help researchers to better understand the 
uncertainty of future climate projections. 
Observational reanalyses reconstruct past 
climate, therefore, giving us a means of 
comparison or “ground truth” to compare 
with projected climate extremes. This allows 
researchers to examine extreme aspects of 
climate, including temperature and 
precipitation.  
While observational reanalyses can be used 
to evaluate climate model historical 
projections, research has shown 
discrepancies between different historical 
reanalyses, suggesting that there are 
inconsistencies in their ability to represent 
past extremes (Sillmann et al. 2013).  
Validating the variability of climate 
extremes simulated by climate models is 
essential in order to better understand 
whether models represent the overall 
frequency and variability of extreme 
temperatures, and precipitation. In addition, 
determining the degree of variability in 
model to observation differences when 
applying different reanalysis products can 
help researchers understand the degree to 
which different ‘ground truths’ can impact 
their results. With this understanding we are 
able to anticipate and plan for extremes in 
the future on a global and local scale. 
Increased understanding of how climate 
extremes may fluctuate in the future will 
benefit stakeholders and decision makers 
impacted by these changes. In order to 
address the problem, this work will use a 
suite of metrics for extremes in temperature 
and precipitation, obtained from the Expert 
Team on Climate Change and Detection 
Indices (ETCCDI, Alexander et al. 2006). 
 

Our research addresses three primary goals. 
Firstly, to examine the range of historical 
climate extreme events in the south-central 
U.S. using reanalysis datasets. Secondly, to 
explore how well climate models capture the 
range of these events by comparing 
reanalysis datasets to GCM historical 
simulations and determining model biases. 
Lastly, we analyze how these biases effect 
the way future extreme events are projected, 
and how these climate extreme events might 
change in the future.    
 
2. DATA AND METHODS  
 
Study Area  
 
We focused on the south-central region of 
the U.S. and divided it into three regions 
(i.e. west-central, south-central, and east-
central). Figure 1 shows the regional 
domains.  

Figure 1: Region for analysis split into three sub-
regions of focus.  
 
The region was split into three sub-regions 
in order to more accurately reflect the 
climate extremes across the precipitation 
gradient in the south-central U.S. (Figure 2). 
The east-central portion is generally more 
humid and closer to sea-level which 
contrasts significantly with the semi-arid 
and mountainous terrain of the west-central. 
The south-central sub-region consists of 
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relatively flat grasslands. Variation in 
climate change impacts are likely due to the 
apparent diversity within the region (Shafer 
et al. 2014). 
 

 

  
Figure 2 (left): Precipitation gradient across 
Oklahoma and Texas. (Adapted from Kunkel 
2013) 
 
Data  
 
ETCCDI defined a list of 27 core climate 
extreme indices of temperature and 
precipitation (Alexander et al. 2006).  
These indices offer additional information 
on extremes in climate that general mean 
values cannot provide. The climate extreme 
indices were obtained from the ETCCDI 
indices archived at 
http://www.cccma.ec.gc.ca/data/climdex/. 
We investigated 11 out of the 27 defined 
indices (see Table 1).  
 
 

 

 
Table 1: The 11 extreme indices used for this project, defined by the ETCCDI. 
 

Index Names & Descriptions Index Abbreviation 

Percentage of Cold Nights (below 10th percentile) TN10p 

Percentage of Cold Days (below 10th percentile) TX10p 

Percentage of Warm Nights (above 90th percentile) TN90p 

Percentage of Warm Days (above 90th percentile) TX90p 

Max. 1 day precipitation RX1day 

Max 5 day precipitation RX5day 

Max. daily max. temp. per month TXx 

Min. daily max. temp. per month TXn 

Max. daily min. temp. per month TNx 

Min. daily min. temp per month TNn 

Diurnal temp. range- difference in daily max and min temp. DTR 
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The Climate extreme indices used in this 
study have been calculated for the majority 
of global climate models (GCMs) from the 
Coupled Model Intercomparison project 
Phase 5 (CMIP5). The CMIP5 GCMs 
improve upon previous climate models by 
including interactive ocean and carbon 
cycles, the indirect effect of aerosols, and (in 
some models) the projection of volcanic and 
solar forcing (Sillmann et al. 2013). CMIP5 
provides historical simulations and future 
projections out to 2100 (http://cmip-
pcmdi.llnl.gov/cmip5/). Extremes indices 
are also available from four reanalyses 
datasets. Reanalyses are model simulations 
that are driven by observational data. 
Reanalyses have a gridded output similar to 
that of GCMs. This allows them to be easily 
compared to model simulations (Sillmann et 
al. 2013). We utilized four reanalyses: 
ERA40, ERAInterim, National Center for 
Environmental Prediction/National Center 
for Atmospheric Research (NCEP/NCAR) 
Reanalysis 1 (NCEP1), and NCEP-DOE 
Reanalysis 2 (NCEP2).  
 
Methodology  
 
We used 30 of the 38 available CMIP5 
model datasets, and 11 extremes indices. 
These datasets had both historical and future 
model output that were regridded (into a 2x2 
degree grid) over our sub-domains using an 
NCAR Command Line (NCL) program, 
which converted NetCDF to text files. A 
similar NCL program was used in order to 
output text files for the four reanalyses 
across the three sub-regions. All of the 
reanalyses are created using different 
methods and span different time periods 
meaning that their computed historical data 
can differ from one another. For each 
reanalysis dataset, all available years in the 
data were included. The historical period 
was typically 1850-2005. The CMIP5 future 
period was typically from 2006 to 2100. We 

used this time period when projecting 
extremes into the future. Three emission 
representative concentration pathways 
(RCPs; Friedlingstein et al. 2014) were 
considered: RCP2.6, 4.5, and 8.5. RCPs are 
emissions scenarios calculated based on 
projections of anthropogenic greenhouse gas 
emissions. RCP2.6 projects relatively small 
amounts of anthropogenic greenhouse gas 
emissions while RCP8.5 represents 
continuously high greenhouse gas 
emissions. In most cases, we used only the 
first available ensemble member, for which 
the extremes had already been calculated.  
 
In order to better understand how each GCM 
extreme diverges from reanalysis in the 
historical period, we calculated a seasonal 
percentage bias for each of the 11 extreme 
indices. Another NCL program was created 
to calculate these biases. The percentage 
bias of each GCM is relative to each 
reanalysis, and the climatology used to 
extract percentage bias was the length of the 
reanalysis dataset. The seasonal percentage 
biases for each of the 11 extreme indices 
were calculated for each model by 
comparing its historical data against the four 
reanalysis data sets. The percentage biases 
were averaged over all seasons and GCMs. 
The mean percentage bias was also 
calculated for each region by averaging the 
biases obtained from using the four different 
‘ground truth’ reanalyses. All of these 
calculations were used in order to create a 
bias (portrait) diagram for each region. 
Bias/portrait diagrams displays the mean 
percentage bias per season across each 
model and extreme, and was adapted from 
Sillmann et al. (2013). 
 
The next step was the calculation of the 
absolute value for the bias percentage for all 
the extremes for each season per region. The 
mean of each season was averaged to get the 
all season average (per model). We used 
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these cumulative percentage biases to rank 
the models in order by performance. The 
five best and worst models over all seasons 
for the south-central subdomain were used 
to assess modeled future projections. Due to 
time constraints, we assessed future trends 
for only three select extremes: maximum 5-
day precipitation, percentage of cold days 
below the 10th percentile, and percentage of 
warm days above the 90th percentile 
(respectively: RX5days, TN10p, and 
TX90p). These three extremes represent a 
glimpse of overall precipitation and 
temperature events and trends. Only RCP8.5 
was assessed because it offers the greatest 
growth in emission, and thus, the largest 
anthropogenic climate change signal. We 
used data from all four of the reanalyses in 
order to represent the historical period.  
 
3. RESULTS  
 
Tables 2, 3, and 4 show the bias/portrait 
diagrams that were created for each sub-
region. The colors in the diagram represent 
the percentage bias with warm colors 
showing a higher bias than cooler colors. 
Dashes (-) inside the box indicate that the 
model has a negative (cold/dry) bias, while 
an empty box indicates a positive 
(warm/wet) bias. In general, biases for most 
of the extreme indices examined were more 
pronounced during the spring or fall months 
for each region. Larger model vs reanalysis 
biases are also evident in summer in the 
westernmost sub-domain (Table 4) for 
maximum one day and maximum 5-day 
precipitation (RX1day and RX5 day 
respectively) in the west-central region 
(Table 4). These extremes show a 

particularly high bias in comparison to the 
south- and east-central regions.  
 
Across the entire south-central U.S., 
minimum daily temperature (TNn) has a 
high bias independent of the model, 
typically exceeding 80% or even 100%.  
Although, you can see a noticeably higher 
bias in all three regions, it seems to 
particularly impact the south- and west- 
central domains. With this variable in 
particular, we identified that some reanalysis 
data (particularly NCEP1) was close to 0oC 
when averaged seasonally. Compared model 
values would therefore create a very large 
percentage bias (up to 539% in this case) if 
they were not also close to 0. Failing to 
normalize the percentage biases presented 
itself as a limitation within this study. We 
could also have converted temperature data 
to Kelvins rather than degrees Celsius. 
 
The comparison of the absolute values of the 
percentage biases for each observation-
based reanalysis is shown in Table 5. The 
significantly larger biases of TNn are 
numerically exemplified across each region 
and reanalysis. Additionally, you can see 
that a higher bias is calculated for RX1day 
and RX5day in the west-central compared to 
the other two regions. The GCMs bias 
relative to ERA40 for these extremes in the 
west-central region are substantially larger 
than other regions or reanalyses. In each 
region the CMIP5 data that best agrees with 
a given reanalysis differs. Table 6 shows the 
average of each reanalysis across all of the 
extreme indices and the 3 domains. It shows 
that the GCMs are least biased when 
ERAInterim is the observation, which can 
also be seen in the values in Table 5.        
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Table 2: East-central bias/portrait diagram demonstrating the percentage bias for each of the 11 selected extremes across all 30 
GCMs. Negative percentage biases are shown as dashed within a corresponding box.   
 

 
Table 3: Same as Table 2 but for the south-central region.  
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Table 4: Same as Table 2 but for the west-central region.  
 
 
 

 
Table 5: Comparison of the absolute values of the extreme indices percentage biases for each observation-based reanalysis.   
 
 
 
 
 
 
Table 6: Average of each absolute value percentage bias across all of the extreme indices and the three domains.  
 

Bias  
ERA40 

Bias  
ERAInterim 

Bias  
NCEP1 

Bias  
NCEP2 

18.83 16.73 28.72 19.80 
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Table 7: Ranking of the GCMs for the east-central region by averaging the extremes indices percentage biases across all 
seasons as well as per season. The percentage biases highlighted in green are those with lowest bias (the “best” models), while 
the ones highlighted in red are the highest percentage biases (the “worst” models).  
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Table 8: Same as Table 7 but for south-central region. 
 

 
Table 9: Same as Table 7 but for west-central region.  
 

 
Table 10: Model name and percentage bias for the top and bottom GCMs per region for each seasonal group. The percentage 
biases highlighted in green are those with lowest bias (the “best” models), while the ones highlighted in red are the highest 
percentage biases (the “worst” models). 
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Figure 3: Future projections of the “best” and “worst” GCMs for Rx5day extreme index. The gray lines represent the four 
historical observation-based reanalyses. Green lines show the five lowest (“best”) percentage biases, while the red lines 
represent the five highest/(“worst”) percentage biases. Trend lines are included for each of the GCMs projections.  
 

 
Figure 4: Same as Figure 3 but for TN10p.  
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Figure 5: Same as Figure 3 but for TX90p. 
 

EraInterim tended to be within a low to 
medium range of bias, while each of the 
other reanalyses show noticeably higher 
biases when used as the “ground truth” 
depending on the region and/or extreme. 
Each observation-based reanalysis simulates 
the past differently. When comparing the 
percentage bias against each reanalysis it is 
clear that there is not one universal “best”. 
The “best” and “worst” varies depending 
largely on the extreme and region. This 
suggests that in order to get the most 
accurate depiction of the past multiple 
observation-based reanalyses must be 
compared. 
 
Tables 7,8, and 9 show the ranking of GCMs 
per season as well as across all the seasons 
for each sub-region. The top and bottom five 
per region for each seasonal group are 
compiled in Table 10. The best and worst 
performing models varied in relation to 
region and season. Models from the same 
institution tended to contain similar biases. 
For example, many of the MIROC GCMs 
had consistently higher biases.  
 
Future projections of RX5day showed that 
most of the best models predicted a larger 
maximum 5-day precipitation than the worst 
models did (Figure 3).  Better models also 

had a generally higher TN10p than the 
worse models (Figure 4) - although, one 
model (INMCM4) is consistently higher 
than the closely grouped best models. The 
best TX90p model projections tended to be 
lower than those of the worst, but once again 
one model (INMCM4) was consistently 
lower than the best model projections 
(Figure 5).  
 
For this study we were only able to 
thoroughly analyze a few of the “best” and 
“worst” models in order to project into the 
future. More work is needed in this area 
before we can make any robust conclusions 
regarding a secular difference between the 
“best” and “worst” models. 
 
4.SUMMARY 
 
For the purpose of this study, the south-
central region of the U.S. was divided into 
three sub-regions: west-central, south-
central, and east-central. We used output 
from 30 of the CMIP5 GCMs historical 
simulations and future projections of 
emissions scenarios RCP2.6, 4.5 and 8.5. 
Using data from four observation-based 
reanalyses as a means for comparison, a 
NCL program was used to calculate the 
GCMs historical simulation percentage bias 
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for each month in the available years. These 
percentage biases were averaged per season 
and plotted as a bias/portrait diagram, which 
acts as a visually appealing and 
comprehensive way to convey differences in 
biases across all the GCMs and extreme 
indices per region. Absolute values for the 
biases were used to generate an average 
percentage bias of each observation-based 
reanalysis for all of the GCMs per extreme. 
This allowed us to compare the bias 
associated with each observation-based 
reanalysis per extreme, as well as averaged 
across each extreme. We used a similar 
method in order to determine the five GCMs 
with the lowest and highest percentage bias, 
(the “best” and “worst” performing models 
respectively) and average the GCMs bias 
percentages per each season and overall.  
 
TNn, as well as several other extremes show 
noticeably higher percentage bias in each 
sub-region. This is especially apparent in 
transition seasons (spring and fall).  
Previous studies have suggested that climate 
and weather extremes are more likely during 
transitions seasons such as these (Alexander 
et al. 2006; Donat et al. 2013; Nicholas 
2014). In the case of TNn however this was 
primarily due to the mean season value in 
certain reanalyses falling close to 0°C, 
which occurred most often during these 
seasons. When seasonally averaged, this 
number may tend to fall further from the 0-
degree Celsius threshold, causing the 
percentage bias to appear larger. Further 
research would be required in order to test 
the validity of this theory.  
 
In the west-central region increased bias is 
present for precipitation extremes (Rx1day 
and Rx5day) during the summer as well as 
the transition seasons. This suggests that 
other factors may be affecting this region.  
The west-central has topography ranging 
from high mountain peaks to low valleys. 

The Rocky Mountains as well as various 
other mountain ranges extend into this area. 
The most abundant precipitation in the 
region occurs between May and September, 
associated with the North American 
Monsoon (NAM; NOAA 2004). This period 
of time correlates with the timing of the 
higher heavy rainfall biases, suggesting that 
the simulation of NAM departs in frequency 
and/or magnitude compared with reanalyses.  
The inability of models to accurately 
simulate the topography of the region and/or 
NAM and its effect on precipitation and 
temperature are two possible factor 
contributing to higher biases amongst TNn 
for all regions (particularly the south- and 
west-central domains) and precipitation 
extremes in the west-central domain. 
The particularly high TNn biases are seen 
across all three regions but particularly in 
the south- and west-central domain. This 
may be related to any number of the 
previous factors. Another possible 
explanation for this is that the eastern sub-
domain of this region may tend to be 
warmer.  
 
Failing to normalize the percentage biases 
was a limit for this study. The observation-
based reanalyses large bias spread (with 
biases getting as high as 539%), is attributed 
to values within the observation-based data 
that are close to 0 when averaged seasonally. 
Compared model values would therefore 
create a very large percentage bias if they 
were not also close to 0. This can be 
resolved by normalizing the data.  
 
Research on GCM biases in specific regions 
helps scientists better understand how 
models perform in these areas. The use of 
several observation-based reanalysis 
reaffirms that users must be careful not to 
assume that these are entirely accurate 
depictions of past climate. Future 
projections show that there is a possibility of 
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different magnitudes of the best and worst 
model trends. This could be useful for better 
constraining the magnitude of possible 
future climate change for this region.  
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