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Abstract 
 
 In the past few decades, the climate in Australian has been warming at an alarming rate when compared to 
historical variations. Associated with that warming, extended heat events, lasting for weeks to months have plagued 
the country. Climate model projections suggest that such events will occur more frequently and intensify in the 
future. The extreme temperatures have damages ecosystems through droughts and fire and resulted in the loss of 
human life.  

This study examines how the combination of sea surface temperatures (SSTs) and climate drivers predict 
summer mean maximum temperature at selected locations in SE Australia. Ninety-one ocean grid boxes of SST 
surrounding Australia were used for simultaneous and lag1 relations as well as 42 climate drivers, creating a suite of 
224 potential predictors. Variable reduction using 5-fold cross validated linear regression and bagging, resulted in ~ 
90% reduction in the number of variables passed to the final prediction equations.  Linear multiple and nonlinear 
kernel regression methods were applied to predict the January anomalies of maximum temperature using this 
reduced set of predictors.  For the nonlinear regressions, two kernels were evaluated: polynomial and radial basis 
function.  The polynomial degree and radial basis function kernel width were optimized for sea surface temperatures 
and climate drivers by maximizing their 10-fold cross validated correlations with the air temperatures at the various 
locations in SE Australia. The key findings were (1) climate drivers had as much significant influence on the 
prediction accuracy as SSTs and (2) the combination of the reduced sets of SSTs and climate drivers often 
accounted for 40-60% of the January mean maximum temperature variance.  Such a large percentage of predictable 
variance is expected to lead to more effective monthly temperature predictions. 
 
 
1. Introduction 
 

Australia has warmed by 0.9C since 1910 (Fig. 
1) and is expected to continue warming at a rate that 
is proportional to the greenhouse gas concentration 
(Hopkin, 2014). The year of 2013 was the hottest 
year since 2005.  The summer (November through 
March,) temperatures are breaking and setting new 
records yearly and these abnormally hot states last 
longer than in the past (IPCC, 2007). Extreme hot to 
cold daytime ratio has risen to 3:1, warming 0.8°C 
since 1910 (Hopkin, 2014) (Fig. 2). The hot to cold 
nighttime ratio is now 5:1, warming 1.1°C.  These 
extreme temperatures are thought to take more lives 
than any other natural hazard over the past 150 years, 
and are referred to as the “silent killer.” Extreme hot 
weather increases the number of deaths, health 

problems, affects infrastructure as well as 
socioeconomic impacts (Richman and Leslie, 2013). 

Figure 1. The frequency of warm to cool mean SST 
anomalies from 1961 to 1990 is show in this stacked 
scatterplot. 
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Figure 2. Mean monthly maximum and minimum 
temperatures. 

 
The present research seeks to establish 

relationships between the mean maximum 
temperature in a mid-summer month, January and sea 
surface temperatures surrounding Australia as well as 
a suite of climate drivers around the globe.  The goal 
is to create a technique that predicts the mean 
maximum temperature anomalies accurately, 
allowing notification of citizens and government 
entities that make temperature dependent decisions.  
Section 2 presents the datasets used to identify 
predictors and also the station temperature data 
response variable.  The results of the analyses are 
communicated in Section 3 and conclusions drawn in 
section 4.  
 

This study applies methods of variable 
reduction using linear regression and bagging trees.  
Bagging trees is another word for bootstrap 
aggregation that pulls together decision trees as base 
classifiers. This improves the results of the 
classification algorithms. 

 
 The models are given monthly anomalies of 
sea surface temperatures and air temperatures at a 
location to calculate the correlation between the two 
and reduce the variability by extracting the variables 
that had no significant attribution to the set. Irregular 
warming of the earth’s exterior affects atmospheric 
movement, that produces evaporation from oceans 
and unequal warming of the land and oceanic surface, 
that causes many different climate drivers. These 
climate drivers are also interrelated with sea surface 
temperature anomalies according to each location 
because they affect the weather over a different area 
throughout different periods. 

 
 

 
1. Data and Method 
1.1 Data 
 Monthly sea surface temperature anomalies 
(SSTAs) from Kaplan Extended SST V2 from ESRL 
(Earth Systems Research Lab) were extracted from 
1958 to 2013 for the present research. The data were 
extracted for latitudes between 2.5S and 42.5S and 
longitudes 107.5E to 162.5E to insure all areas 
around Australia were considered. 
 
 The data were in netCDF format and 
converted into ASCII (American Standard Code for 
Information Interchange), using the ncdump 
command. 
 
 The output contained a continuous set of 
monthly data from 1958 to 2013.  January SSTA data 
were extracted in individual years and concatenated 
into a continuous set of 55 January months for each 
of the 91 SST grids.    
 
 Along with the aforementioned SST 
anomalies, an air temperature record at a location in 
SE Australia was required as a response variable.   
Melbourne was chosen due to it being the biggest city 
in Victoria and one of the most populated cities in 
Australia.  

 
 
 
 
 
 
 

 
 
 

 

 
Figure 3. Correlations of sea surface temperatures 
according to January temperatures across Australia 
for (a) lag0 and (b) lag1. 
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 SSTA data for the January (hereafter 
referred to as “lag0” and the December months for the 
previous year (hereafter referred to as “lag1”) were 
drawn and added to the pool of potential predictors.  
Each SSTA time series for lag0 and lag1 was 
correlated with the Melbourne temperature time 
series, mapped to the domain and contoured (Figs. 3a 
and 3b).  
 
 The analysis procedures were part of the 
WEKA (Waikato Environment for Knowledge 
Analysis) package.   WEKA programs were used for 
classification, variable selection, regression, and 
dimension reduction.  

 
A side from the SSTA data, climate driver 

anomalies were also used as predictors.. The climate 
driver anomaly variables incorporated:  
1. Southern Annular Mode(SAM) 
2.  Southern Oscillation Index (SOI) 
3. Dipole Mode Index (DMI) 
4. Pacific Decadal Oscillation (PDO) 
5. Artic Oscillation (AO) 
6. North Atlantic Oscillation (NAO) 
7. Pacific-North American pattern (PNA) 
8. Blocking 140E (B140E) 
9. Blocking 160E (B160E) 
10. Modoki 
11. Niño 12 
12. Niño 3 
13. Niño 4 
14. Niño 3.4 
15. High Frequency Southern Annular Mode 

(HFSAM) 
16.  High Frequency Southern Oscillation Index 

(HFSOI) 
17. High Frequency Dipole Mode Index (HFDMI) 
18. High Frequency Pacific Decadal Oscillation 

(HFPDO) 
19. High Frequency Arctic Oscillation (HFAO) 
20. High Frequency North Atlantic Oscillation 

(HFNAO) 
21. High Frequany Pacific-North American pattern 

(HFPNA) 
22. High Frequency at Blocking 140E  (HFB140E) 
23. High frequency at Blocking 160E (HFB160E) 
24. High Frequency Modoki (HFModoki) 
25. High Frequency Niño 12A (HFNiño12) 
26. High Frequency Niño 3A (HFNiño3) 
27. High Frequency Niño 4A (HFNiño4) 
28. High Frequency Niño 3.4A (HFNiño3.4) 
29. Low Frequency Southern Annular Mode 

(LFSAM) 
30. LowFrequency Southern Oscillation Index 

(LFSOI) 
31. Low Frequency Dipole Mode Index (LFDMI)  

32. Low FrequencyPacific Decadal Oscillation 
(LFPDO) 

33. Low FrequencyArtic Oscillation (LFAO) 
34. Low Frequency North Atlantic Oscillation 

(LFNAO) 
35. Low Frequany Pacific-North American pattern 

(LFPNA) 
36. Low Frequency at Blocking 140E (LFB140E) 
37. Low frequency at Blovking 160E (LFB160E) 
38. Low Frequency Modoki (LFModoki) 
39. Low Frequency Niño 12A (LFNiño12) 
40. Low Frequency Niño 3A   (LFNiño3) 
41. Low Frequency Niño 4 A(LFNiño4) 
42. Low Frequency Niño 3.4A (LFNiño3.4) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. An illustration of some climate drivers on 
Australia.  
 

In addition to Melbourne (ME), the 
procedure was applied to three additional air 
temperature sites at Tibooburra (TI), Woomera 
(WO), and Sydney (SY). A map including these 
locations are displayed below (Fig. 5) 

 

Figure 5. A map of Australia is shown to clearly 
show the exact locations of all four sites. 

 
 A final compilation file of SST anomalies 
for lag0 and lag1, 42 climate divers, and 4 site air 
temperature anomalies for the 55 years was used for 
the subsequent analyses in WEKA.  

 
Since there were only 55 years of data, 224 

predictors were intractable for stable prediction 

Melbourne	  :	  ME	  
Tibooburra:	  TI	  
Woomera:	  WO	  

Sydney:	  SY	  
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equations.  Through attribute selection, according to 
correlation-based feature selection subset evaluation 
(CfsCubsetEval) with a greedy step-wise method, the 
best attributes were identified using five-fold cross-
validation. The process was applied to the lag0 SST, 
the lag1 SST and the climate drivers (to predict air 
temperature) in three separate analysis steps.  The 
cross-validation was important to insure that he 
results were not spurious (relationships that fit 
irreproducible noise).  For the greedy stepwise 
multiple linear regression, the number of times any 
predictor appeared in the cross-validated analysis, to 
predict the Melbourne temperature anomalies, was 
noted.  In instances where that value was greater than 
zero, the predictor was selected for further analysis.  
Additionally, bagging tree selection was used to 
identify additional variables.  This process yielded a 
compact set of robust attributes that represented 
significant predictors that generalized well..  Those 
variables identified by the greedy stepwise and 
bagged tree analyses from the lag0, lag1 and climate 
drivers sets were all combined into a new compact set 
of predictors and subjected to a final set of 
predictions using linear regression and 
SMOregression with a exponent of 1.  The advantage 
of this approach was that the predictor weights could 
be noted to determine if further variable reduction 
was possible for a final set of predictors.   
Additionally, one final bagged tree analysis was used 
to achieve the compact set of predictors.  In the case 
of Melbourne, linear regression with 5-fold cross 
validation identified four predictors and bagging trees 
selected seven. For Melbourne, three of the predictors 
were the same for the regression and bagging 
methods, leaving a set of eight unique predictors.  

 
Support Vector Regression (SVR), with 

sequential minimum optimization (SMOregression) , 
uses kernels, to replace the inner product in the 
regression formulation.  The selection of a kernel is a 
critical step to obtain the solution that generalizes 
best to independent data.  In the present analyses, a 
set of experiments was performed to determine the 
radial basis function (RBF) kernel width and the 
exponent weights on the polynomial (Poly) kernel. 
With the polynomial kernel, the exponent was 
changed starting with 0.1 to 3.0, in steps of every 
tenth of a decimal for a total of 30 kernel evaluations.  
For each evaluation a 10-fold cross-validation was 
used and the correlation change between the 
predictions and the observed air temperatures were 
noted.  If the correlation continued to increase, 
further evaluations were made. The exponent 
associated with the maximum correlation was 
selected as the optimized model that generalized best.  
This process of kernel evaluation was also employed 

for the RBFkernel, for RBF widths ranging from .01 
to .30 increasing every hundredth of decimal. The 
RBF weight associated with the largest correlation 
was noted and that was the best generalizing RBF 
model.  

 
 Of the two kernels, the one model with the 

largest correlation was kept, and the mean absolute 
error (MAE), and root mean absolute error (RMSE) 
were recorded as well. This was done for each lag0 
and lag1 for each Melbourne and the process was 
repeated for each of the three remaining locations in 
SE Australia. The only difference for the other cities 
was that selection of attributes with a greedy stepwise 
method with a five-folds was made and the variables 
noted.  Similarly, bagging trees were employed 
temperature.  The one set of predictors (either greedy 
stepwise or bagging trees) that yielded the model that 
generalized best was identified. In general, it was 
noted that small sets of predictors yielded models 
with larger cross-validated correlations and smaller 
MAE or RMSE, suggesting that retaining too many 
predictors hurt the generalization properties of the 
predictions.  
 
2. Results 
 
Using the aforementioned variable selection 
programs in WEKA resulted in a dramatic amount of 
data reduction. The variables used for Melbourne 
alone, in lag0 was reduced to 8.8% of the original 
number (8 retained out of a possible 91) and in lag1, 
the 91 was reduced to 5 (5.5%) used.  There were 224 
potential predictor variables, for the final predictions 
of Melbourne air temperature, and these variable 
reduction techniques winnowed this to 20, for a 
decreased of 91.1% (8.9% selected). 

 
After determining which variables are best 

correlated for each lag of SSTs and climate drivers, 
all of the selected attributes were used to predict the 
air temperature. From lag0, eight grid points of SSTA 
were kept, five from lag1, and seven from the climate 
drivers. All of these variables were preprocessed 
together with Melbourne, but this time at 10 fold 
cross-validation. Then the polykernel and RBFkernel 
ranges were changed again, keeping the best 
technique with the highest 10-fold cross-validated 
correlation. Of the two, the best method was kept and 
the predictions and forecasts were mapped on a 
scatterplot. (Fig. 6) This step was repeated for each 
location.	  	  
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Figure	  6.	  These	  scatterplots	  represent	  a	  10-‐fold	  
cross-‐validation	  of	  SSTs,	  Climate	  Drivers,	  and	  (a)	  
Melbourne,	  (b)	  Tibboburra,	  (c)	  Woomera,	  (d)	  
Sydney.	  
	  

The air temperature at all of the four sites 
were predicted with stepwise and kernel 
regressions.us The evaluation of the forecasts are 
expressed in terms of the correlation between the 
predicted and observed temperatures for independent 
testing data in the 10-fold cross validations as well as 
the mean absolute error (MAE), and root mean 
squared error (RMSE) associated with the anomaly 
mean. Each location was analyzed separately and 
displayed as a scatterplot.  Additionally, line graphs 
were created to show the sensitivity of the correlation 
accuracy to the kernel parameters (either exponent or 
radial basis width). The scatterplot was used to show 
the relation between the actual and predicted 
forecasts.  On the forecast evaluation scatterplots 
(Fig. 6) a linear regression trend line or line of best fit 
was added to the plot and positioned on the graph to 
represent the data.  The results from Melbourne (Fig. 
6) show a 40° angle that was an over prediction of the 
model in comparison to the actual air temperature. 
The plot for Tibooburra has a regression line with a 
30° angle, Woomera had a 35° angle and Sydney 
about 30°, indicative of overforecasting the air 
temperature at each location.  Figure 7 shows the 
relation of changing the width of the polykernel to 
the correlation. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Line graphs show the sensitivity of 
correlation accuracy. According to the highest kernel 
method. A trend line was placed to best fit the 
relationship.  
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Table 1. Data chart that shows (a) the correlation, and 
(b) the MAE, of the 10-fold cross-validation for the 
temperature predictions at each location. 
 

 Table 1a shows that the sea surface 
temperatures were as significant as the climate 
drivers in obtaining accurate predictions.  The final 
variance explained for each location was 70.2% at 
Melbourne, 50.7% at Tibooburra, 46.8% at Woomera 
and 42.5% at Sydney. The variability was reduced in 
absolute error (Fig. 1b). 

 
In this study, it was determined that it is not 

optimal to put all variables into the prediction 
scheme; careful variable selection was vital to 
obtaining accurate cross-validated predictions. In 
terms of variable selection, bagging tree regression 
achieved the most accurate predictions with fewer 
than 10% of the available predictors. Keeping too 
many or all predictors always reduced the accuracy 
of the prediction dramatically when cross-validated 
on the independent data. 

 
3. Conclusion 
 

For the past two decades, monthly mean 
maximum temperatures in Australia have been 
increasing dramatically, putting stress on people, 
ecosystems and infrastructure.  It is clear that the 
climate change has an overwhelming impact on the 
environment. Extreme heat over an extended period 
of time increases fire danger, drought,, and reduces 
physical structures stability as well as stressing or 
killing the humans, plants, and animals that inhabit 
Australia.  

 
This study uses a variable reduction approach 

applied to SST and climate driver data to predict the 
January monthly maximum temperature anomalies at 
four diverse locations in SE Australia.  Through state 
of the science variable selection kernel prediction 
techniques, the prediction variance explained for each 

location was 70.2% at Melbourne, 50.7% at 
Tibooburra, 46.8% at Woomera and 42.5% at 
Sydney.  Such large amounts of the variance 
explained should make climate prediction of air 
temperature in SE Australia feasible.   

 
Unfortunately, the increase in hot months has 

commenced and is projected to continue to become 
more common as greenhouse gasses increase.  This 
makes accurate prediction of the most extreme heat 
critical, early detection of prolonged heat events can 
and will allow society to properly prepare as much 
possible.  The methods presented herein help to 
define the predictability of those events. 
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b)	  	  	  Mean	  Absolute	  Error	  	  	  	  (°C)	  
	   SST	  

Lag0	  
SST	  
Lag1	  

Climate	  
Drivers	  

All	  3	  
sets	  

Melbourne	   1.116	   1.166	   1.108	   0.765	  
Tibooburra	   1.537	   1.492	   1.679	   1.184	  
Woomera	   1.177	   1.672	   1.254	   1.105	  
Sydney	   0.717	   0.765	   0.885	   0.649	  

a)	  	  	  Correlation	  Coefficient	  
	   SST	  

Lag0	  
SST	  
Lag1	  

Climate	  
Drivers	  

All	  3	  
sets	  

Melbourne	   0.650	   0.600	   0.669	   0.838	  
Tibooburra	   0.618	   0.445	   0.302	   0.712	  
Woomera	   0.626	   0.568	   0.593	   0.684	  
Sydney	   0.652	   0.511	   0.309	   0.670	  
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