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ABSTRACT 

We use a cloud detection algorithm that detects cloudy pixels from MODIS images by characterizing 

individual pixels as cloudy or non-cloudy based on the brightness values of the pixels and a predetermined 

threshold. The algorithm then produces mean fields of daytime cloudiness over different geographical regions. 

Although the cloud climatologies produced initially appeared realistic, it was found that the algorithm largely 

underestimated the cloud frequencies over some regions when using a threshold of 215.  Analyzing various MODIS 

images and recording cloudiness over different sectors served as the “ground truth” data which we compared to the 

algorithm output.    After comparing the subjective estimates and the algorithm output for four regions of the world, 

we found that the algorithm underestimates cloudiness over these additional regions and that lowering the thresholds 

to 170-190 over oceans and 190-215 over land generally identified the thick clouds most accurately.  Studying more 

regions or extending research on certain regions will allow us to better understand how the algorithm behaves with 

certain types of cloudiness and geography.  Even though the thresholding technique is somewhat arbitrary, by better 

understanding how the algorithm behaves we can modify the algorithm to ensure that the output more accurately 

describes cloud climatologies around the world.  If we are able to do this, then our algorithm could be used for many 

applications such as validating the numerical model simulations of cloud climatologies or assessing climate and 

potential climate change.   

 
 

 
   

 
 
.
1. INTRODUCTION  
 

Cloud climatologies have been developed in 

recent decades with increasing dependence on satellite 

imagery.  There are many cloud detection algorithms 

that use different methods to produce cloud 

climatologies. For example, the CLAVR-1 (Cloud 

Advanced Very High Resolution Radiometer) 

algorithm classifies pixels in 4km resolution images 

into clear, mixed, and cloudy categories (Stowe et al., 

1999).  Another algorithm has been used by Ackerman 

et al (2003) to compare cloudiness from MODIS 

imagery with observations from radar and lidar 
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products; they found that the MODIS algorithm agreed 

with the lidar about 85% of the time.  And still there are 

multi-spectral algorithms that determine daytime cloud 

type using satellite imager data from AVHRR (The 

Advanced Very High Resolution Radiometer) and 

VIIRS (The Visible/Infrared Imager/Radiometer Suite) 

(Pavolonis et al., 2005). 

Most cloud climatologies are available at 5-10 

km resolution or greater.  An example of such a cloud 

product is one derived from using the AIRS instrument 

which was launched in 2002 onboard the Aqua satellite 

and which has a spatial resolution of 13.5 km at nadir 

(Stubenrauch et al., 2010).  The resolution of the 

MODIS visible images is considerably higher - at least 

500m (two of the 3 frequencies making the color 

images are sampled at 500m pixel size while the red 

band is at 250m). With such high resolution, not only 

can we see the clouds over a region, but we can relate 

their occurrence to the underlying geography.  This is 
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very useful in determining what types of clouds form 

over different types of surfaces and how and why those 

clouds form (i.e. what kinds of meteorological 

processes are responsible for the formation of clouds). 

We have been producing cloud climatologies 

at full resolution from MODIS imagery for different 

regions of the world. Having an algorithm that could 

reliably describe cloud climatologies around the world 

would be useful for some forecasting applications.  

Having an idea of cloud cover on a global scale could 

help climatologists predict what type of cloud cover one 

would expect in the future for certain regions.  

Ecologists needing to understand the distribution of 

cloud forests and other vegetation types could also use 

MODIS images and our algorithm (Douglas et al, 

2006).  Accurate cloud climatologies can also be used 

for climate studies.  

We have used a simple algorithm to 

distinguish cloudy from cloud-free pixels based on the 

brightness of the pixel.  Past work has used a threshold 

of 215 (0 is black, 255 is white) where anything higher 

than 215 brightness was considered cloudy.  This 

threshold produced mean patterns of cloudiness that 

appeared very realistic. However, we found that for 

some regions the algorithm seemed to underestimate 

the cloud amount from casual inspection of the imagery 

and also ground reports from Peru where sites with 

continuous cloudiness for an entire month were 

analyzed by the algorithm to have 25% cloudiness. So 

although the MODIS images have relatively high 

spatial resolution, the cloud algorithm initially used to 

identify cloudy from clear pixels seemed to 

underestimate the cloud coverage over certain regions 

of the world, especially over oceans. The algorithm also 

cannot distinguish between bright land surfaces and 

clouds and mistakenly counts bright surfaces as clouds.  

With too low of a threshold, the algorithm sometimes 

mistakenly counts bright land surfaces as clouds and so 

tends to overestimate the cloud frequency.  With too 

high of a threshold, the algorithm does not catch the 

thinner clouds over a region and so underestimates the 

cloud frequency.  What we did was to try to match our 

climatology to the observed cloudiness seen by ground 

observers so that we can re-evaluate our procedure.  By 

better understanding where the biases of the algorithm 

appear and making corrections to the algorithm based 

on those biases, we can improve the accuracy of this 

algorithm. 

 

 

2. DATA AND METHODOLOGY 
 

The “Moderate Resolution Imaging Spectro-

radiometer” (MODIS) is an instrument onboard two 

different NASA satellites. The two satellites are called 

Terra and Aqua.  Terra is a morning satellite which 

overpasses at 1030LT and Aqua is an afternoon satellite 

which overpasses at 1330LT.  The satellites orbit the 

earth from pole to pole about 705km above the earth 

and provide global coverage every 1-2 days by 

sweeping 2,330km swaths. The MODIS imagery 

available from the website has the potential to produce 

very high (~250m) resolution cloud climatologies with 

global coverage.   

The daily MODIS images used in this study 

were downloaded from a National Aeronautics and 

Space Administration (NASA) website
1
.  Because of 

time limitations, only select regions were used for 

evaluating the cloudiness.  These sectors included 

imagery from Hawaii, off the southern California coast, 

from northern Peru including both tropical forests and 

over-ocean sections, and from equatorial Africa 

(Figure 1).  
 

 
 

Figure 1: This figure shows the four regions, labeled 

A, B, C, and D, that we focused on for this research.  

Region A is Mauna Loa, Hawaii, Region B is off the 

coast of California, Region C is Northern Peru, and 

Region D is African sectors. 

 

The time period that we looked at depended on the 

sector.  The periods varied because some sectors have 

more years of data than other sectors (Douglas et al., 

2010). After looking through hundreds of MODIS 

images, we characterized a point on the map as either 

being clear (category 1), thin clouds (category 2), or 

thick, bright clouds (category 3).  If we looked through 

an entire years’ worth of data, then we would choose 

about 5-10 days per month because of time limitations.  

If, on the other hand, we looked at months May-

October only, then we would go through every day of 

the months for however many years we were 

examining.  After assigning a cloud category to a region 

for a certain number of years, the next step would be to 

calculate the frequency of each of those categories per 

year within the whole time period.  Then we average 

over the entire interval.  It was these averages 



DORIAN and DOUGLAS p.3  

throughout the entire period that we ended up 

comparing with the output of the cloud detection 

algorithm.   

The algorithm extracts cloud data from 

MODIS images by characterizing pixels as cloudy or 

not cloudy depending on what the chosen threshold is.  

The way the cloud discrimination works is very similar 

to that by Reinke et al (2002). The novel aspect of our 

work is to compare the cloud frequencies generated by 

our algorithm with estimates obtained by visual 

examination of the same imagery.  Subjective estimates 

have the advantage of more easily distinguishing clouds 

from thick dust, smoke or the specular reflection off a 

smooth sea surface.  Our objective is to determine 

whether the output from our algorithm using different 

thresholds can be matched to our subjective estimates 

of the cloudiness using the same imagery data base. The 

best match is the threshold where the percentages agree 

with each other and we get the least “false clouds.”  

Because running the cloud threshold algorithm took 

some time, only select thresholds were chosen, namely 

215, 190, 170, 150 and 120. 

 

 

3. RESULTS/DISCUSSION 
 

In order to find the most accurate thresholds 

for the four regions that we focused on, we created 

graphs showing cloud frequency vs. threshold for my 

estimates of cloud frequency.  In this way we can see 

how the % of cloudiness changes with a changing 

threshold and where our subjective estimates fall 

compared to the algorithm cloud frequencies.  Figure 2 

shows the graphs of cloud frequency vs. threshold for 

the four regions using the Terra + Aqua output. 
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Figure 2: This figure shoes the graphs of cloud 

frequency vs. threshold for the Terra + Aqua algorithm 

output for different points from the sectors a) near 

Hawaii, b) off the coast of California, c) the Nigerian 

coastal area and the over-ocean region near Cameroon, 

and d) over northern Peru.  The cluster of red stars 

closer to the left side of the graph indicates where our 

subjective estimates for thick clouds fell in relation to 

the threshold lines. The cluster of red stars closer to the 

right side of the graphs indicates where our subjective 

estimates for both thick and thin clouds fell in relation 

to the threshold lines. 

For the Mauna Loa Sector we also performed 

an experiment using different sample sizes to see the 

changes in the cloud frequencies.  We examined five 

points, two in the upwind “undisturbed” trade wind 

region, two downwind and one over the island in a 

region with high cloud amounts.  We originally started 

with 6 days/month (spread out) for months May 

through October from 2004-2010.  We then increased 

the sample size and added 5 more days to each month 

just in the year 2004, making it 11 days/month for the 

months May-October in 2004.  Finally, we increased 

the sample size even more to include every single day 

of months May through October for 2004.  This effort 

showed that changing the sample size did not produce a 

large change in the cloudiness values and that the 

maximum difference between the different sample sizes 

was about 5% (Table 1).   

 

 
 

Table 1: The cloud frequency percentages for clear (1), 

thin (2) and thick (3) categories for different sample 

sizes for a point over the ocean near Hawaii.  For 

category 1 there was a change from 65% to 69% to 

70%, for category 2 there was a change from 24% to 

25% to 20%, and for category 3 there was a change 

from 12% to 7% to 11%. 

 

After making subjective estimates of levels of 

cloudiness for points 1 through 5, , we compared the 

algorithm’s output for these same points for the 

thresholds of 215, 190, and 170.  The most accurate 

threshold range for over land was around 190-215 

whereas the most accurate threshold range for over the 

oceans was around 170-190.  An image of the Mauna 

Loa Sector over Hawaii is shown with the cloud 

frequencies and most accurate thresholds for the five 

points in Figure 3. 

 

 

 

 
 
Figure 3: Top: The five points that we looked over for 

the Hawaii sector (Region A).  Bottom: The cloud 

frequencies (in red) calculated for the Terra run 6 

days/month May-Oct 2004-2006.  In black are the 

results of the most accurate thresholds over Mauna Loa, 

Hawaii with the 215 threshold cloud frequency graph.  

The background is the 215 threshold color scheme.  

Thresholds of about 170-190 seemed like sufficient 

thresholds for over the oceans, whereas higher 

thresholds of about 190-215 seemed like sufficient 

thresholds over land.  This goes along with the fact that 

oceans have low albedo whereas land surfaces have 

more reflective surfaces.  The land seemed to have 

much higher cloud frequencies than over the oceans for 

all thresholds over Hawaii.  This is most likely because 

the land surface over Hawaii is not constant in 

elevation, and so there is forced lifting and convection 

over the island during the daytime as the trade wind 
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easterlies interact with the island topography and flow 

around the island (Leopold 1949 pg. 319). 

One important limitation of these ideal 

thresholds is that we are comparing the cloud 

frequencies of category 3’s to the algorithm output, and 

so we are really just finding the most accurate threshold 

to capture the thick, bright clouds.  This way we can 

say that this threshold can at least accurately pick up 

the thicker clouds.  In order to catch the thinner clouds, 

the thresholds would need to be lower.  The reality is 

that the algorithm may never catch all of the clouds that 

are over a region, because even the lowest thresholds 

may not pick up very thin cirrus or stratus clouds and 

may instead pick up brighter land surfaces.   

 The next area where cloud frequencies were 

evaluated with Aqua and Terra imagery was over the 

California coast for the period May-October 2007-

2010.  The subjective estimates of cloudiness indicated 

maximum cloudiness over the ocean points usually 

occurred in the morning hours, or the Terra overpass.  

In other words, cloud coverage tended to decrease from 

morning to afternoon over the Pacific Ocean for my 

sample points. This may be a result of daytime heating 

of the cloud layer which actually “breaks” tends to 

dissipate the low stratus clouds over the Pacific Ocean 

by causing the water molecules within the cloud 

droplets to evaporate.  The stratus decks are often seen 

on the west coasts of continents because of warm air 

moving over colder waters (which were caused by 

upwelling).  For the one land point though, the same 

amount of cloud coverage was more or less present 

between the morning hours and the afternoon hours, 

with bright thick clouds 10% of the time in the morning 

and about 9% in the afternoon. The cloud frequencies 

that we found from examining the MODIS images and 

the thresholds that were found to be most accurate for 

the Aqua + Terra images are summarized in Figure 4.  

 

 

 
 
Figure 4: Top: The five points that I looked at over 

California coast and part of the eastern Pacific Ocean 

(Region B). Bottom: The subjective cloud frequency 

estimates and the most accurate thresholds for each of 

the five points with a 215 threshold background.  

 

The overall best threshold for ocean points was between 

170 and 190.  For the land point over California (Point 

6), it looked like a good threshold would be between 

190 and 215.  These thresholds are very similar to the 

thresholds that we calculated for the Hawaiian points, 

where a threshold of about 170 or 180 seemed ideal for 

ocean points, and somewhere around 200 seemed like 

an ideal threshold for land points.   

The next region that we focused on was over 

northern Peru including some tropical forests.  We 

focused on five points over this sector and looked at 10 

days/month for months January through December in 

the years 2009 and 2010.  Figure 5 shows the average 
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of the Terra and Aqua cloud frequencies that we 

estimated for the five points, and so it essentially shows 

the cloud climatologies around noontime.  The figure 

also shows a map of cloud frequency and most accurate 

thresholds overlaying the 215 threshold algorithm 

output.  The ideal thresholds over Peru ranged between 

190 and 215.  What was interesting about this particular 

region was the extreme variation between the cloud 

frequency over Point 3 and the cloud frequency over 

Point 4. 

 

 

 
 

Figure 5:  Top: The five points that I looked at over the 

Peru sector (Region C).  Bottom: This figure shows the 

most accurate thresholds and the cloud frequency 

percentages for the five points over Peru for months 

January through December 2009-2010 (Aqua + Terra).  

The background is the 215 threshold output. 

 

Both Points 3 and 4 are very close to each other, and 

yet Point 3 had around 75% cloud coverage while Point 

4 had around 44% cloud coverage.  Taking a closer 

look in “Google Earth” showed that Point 3 lies on a 

steep slope of the Andes while point 4 is on flat land.  

The daytime ascent of air along the slope likely 

explains the higher cloud amounts at Point 3.  Points 4 

and 5 are next to each other as well but have very 

similar cloud frequencies.   

After Peru we looked at both the Northern 

sector and Southern sector of Africa.  First we looked at 

four points off of the coast of Western Africa in the 

Northern sector.  The time period we looked at was 

May-December 2009 and January-December 2010, and 

we looked at 10 days per month.  Between the Terra 

and the Aqua cloudiness means, the cloud frequency 

increases between the Terra and Aqua overpass times 

were small, 0-6% for the four sites. The cloudiest point 

seemed to be Point 3, which was a point over a city, 

with about 40% of the time having bright, thick clouds 

in the time period. 

After looking through the output of the 

different thresholds, we found that a threshold of about 

190 seemed to be most accurate for all the points except 

for Point 3, which needed a threshold of between 190 

and 215 (Figure 6).   

 

 

 
 

Figure 6: Top: The four points that we looked at for the 

NW Sector of Africa.  Bottom: The most accurate 

thresholds and the subjectively determined cloud 

frequency percentages for the four points over the NW 

Sector of Africa for Aqua + Terra 10 days/month May-

Dec 2009 and 10 days/month Jan-Dec 2010.  The 

background is the 215 threshold output.  Beneath this 

image is the color bar for the 215 threshold that we 

used to read the cloud percentages from the algorithm 

output. 

 

For the Southern sector, we looked at 5 more points off 

the African coast.  Of all the points we found that Point 

9 had the largest cloud frequency of about 58% of 

category 3’s within the time period. The most accurate 

thresholds for Aqua + Terra that I found were 170 for 

Points 5, 6, and 7, and 190 for Points 8 and 9 (Figure 

7).  A figure shows the four regions we looked at and 
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both the cloud frequencies and the most accurate 

thresholds we found for those four regions. 

 

 

 
 
Figure 7: Top: The five points that we looked over for 

the SE sector of Africa. Bottom: The most accurate 

thresholds and the cloud frequency percentages for the 

five points over the SE Sector of Africa for Aqua 

+Terra 10 days/month May-December 2009 and 

January-December 2010. The background is the 215 

threshold output. 

 

One last thing that we did was to look at which 

thresholds were most accurate for all four of the regions 

combined.  We created graphs of the difference 

between our subjective estimates and the algorithm 

percentages versus each individual threshold.  We 

looked at thick clouds over land and ocean points, over 

only ocean points, and over only land points.  

Additionally we looked at both thick and thin clouds 

over land and ocean points, over only ocean points, and 

over only land points (Figure 8).  

 

  

 
                                               a) 

 

 
                        b)                                                   c) 

 

 

      

 
                                                        a) 

 

 
                           b)                                                     c) 

 
Figure 8: These figures show the average differences 

between our subjective estimates and the algorithm 

cloud frequency percentages for the individual 
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thresholds.  a) A graph for thick clouds over both ocean 

and land points, b) A graph for thick clouds over only 

ocean points, c) A graph for thick clouds over only land 

points, d) A graph for thick and thin clouds over both 

land and ocean points, e) A graph for thick and thin 

clouds over only ocean points, f) A graph for thick and 

thin clouds over only land points. The most accurate 

thresholds for these four regions are the areas on the 

graphs where the differences are closest to zero. 

 

In order to find the most accurate threshold range, 

wherever the smallest differences between our 

subjective estimates and the algorithm cloud 

frequencies were was where the most accurate 

threshold was. Looking at only thick clouds over these 

four regions, the most accurate threshold range for just 

over ocean points was 170-190, over land point was 

190-210, and over both land and ocean points was 

about 190-210. On the other hand, looking at both thick 

and thin clouds over these four regions, the most 

accurate threshold range for just over ocean points was 

90-120, over land was 60-120, and over both land and 

ocean points was about 75-120.   

 

 

 
4. CONCLUSION 
  

After looking at these four different regions 

and viewing how our subjective estimates compare to 

the algorithm output, it is apparent that in order to get 

the most accurate results you need lower thresholds 

between 60 and 120 to capture thick and thin clouds 

over these four regions, and you need higher thresholds 

between 170 and 210 to capture just thick clouds over 

these four regions. It is useful to see the most accurate 

thresholds for capturing thin clouds and thick clouds 

separately because it is unrealistic to assume that the 

algorithm can ever catch all clouds over a region.  By 

dividing thick and thin clouds into separate categories, 

we can better see how the algorithm behaves with 

different types of cloudiness.  Future areas of research 

could include finding the most accurate thresholds for 

additional regions and viewing more points within the 

sectors. 

There are limitations of our work. One such 

limitation was that the algorithm only identifies bright 

thick clouds.  In order to find out the true percentage of 

clouds, both thick and thin, one should use two 

different thresholds.  Another limitation of this work 

was our subjective estimates of cloudiness over 

particular regions.  Obviously subjective estimates 

require distinguishing thick from thin clouds.  

Sometimes it was difficult to decide whether the clouds 

should be considered thin or thick clouds.  We 

generally followed the same judgment when going 

through points to distinguish between what was 

considered “thin” and what was considered thick.  

Problems also arose with reading the algorithm output.  

The algorithm output was judged using a color scale, 

but as the cloud frequency percentage increased, it got 

harder and harder to tell what percentage matched with 

the colors. Finally, we only looked at specific 

thresholds, namely 215, 190, 170, 150, 120, 90, and 60.  

For certain regions, it is possible that the most accurate 

threshold may have very well landed between those 

chosen thresholds. 

Clouds play a very important role in the 

amount of solar energy that reaches the earth’s surface, 

and also the amount of infrared radiation that is 

released or not released from our atmosphere.  Cloud 

climatologies produced using 5km resolution, 250-

500m resolution, or any other resolution can help us 

determine small-scale weather changes over different 

terrain like sea-land breeze. Using our new data set of 

MODIS images from the NASA website can help 

provide a new perspective on global cloud climatology, 

and climatologists everywhere can view our results and 

compare our results to previously produced 

climatologies.  Perfect replications of cloud 

climatologies involves lot of teamwork from groups of 

scientists eager to produce accurate cloud fields, and 

also involves a lot of time and dedication to produce the 

best possible cloud climatology products that can be 

used by anyone who is curious and interested.  
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