Abstract:
The amount of forecast skill involved when issuing tornado and severe thunderstorm warnings is closely related to the type of storm that causes the severe weather. Storms from eight tornado outbreaks are classified and correlated with tornado warnings and severe thunderstorm warnings. These warnings were verified, missed, or shown to be false alarms by relating them with storm reports that match temporally and spatially with those in the Storm Prediction Center’s database. Certain forecast parameters, including the critical success index (CSI), probability of detection (POD), false alarm ratio (FAR), and warning lead time are calculated for each storm type and for each type of warning. Because it was not practical to manually classify these storms (~50,000 entities), a decision tree was trained on a subset of manually classified storms using Quinlan’s C4.5 algorithm. The decision tree was then used to automatically classify storms as being of one of four types: supercellular, linear, pulse or unorganized. It was found that both tornado warnings and severe thunderstorm warnings issued for isolated supercells and convective line storms have higher CSI, higher POD, and lower FAR scores than those issued for pulse and non-organized storms. Lead times were consistently longer for supercell and line storms, while usually very short for pulse and non-organized storms. We conclude that measures of forecast skill are particularly sensitive to the type of storm. Thus, any measurement of forecast skill, such as the year-over-year skill measure of an individual forecast office, has to take into account the types of storms in that office’s warning area in the time period considered.