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ABSTRACT 

This paper presents an automated approach to classifying storms based on their structure using 
decision trees.  When dealing with large datasets, manually classifying storms quickly becomes a repetitive and 
time-consuming task.  An automated system can more quickly and efficiently sort through large quantities of 
data and return value-added output in a form that can be more easily manipulated and understood.  Our method 
of storm classification combines two machine learning techniques, k-means clustering and decision trees.  K-
means segments the reflectivity data into clusters and decision trees classify each cluster.  We chose decision 
trees for their simplicity and ability to screen out unimportant attributes. 

We used a k-means clustering algorithm derived from Lakshamanan (2001) to divide the reflectivity 
into different regions.  Each cluster was sorted as convective or stratiform based on reflectivity.  Each 
convective cluster was hand labeled at both a general and a specific level.  The two general classifications were 
storm cells and linear systems.  The specific classifications for cells were isolated severe, isolated non-severe, 
and circular Mesoscale Convective System (MCS).  The specific classifications for linear systems were trailing 
stratiform, leading stratiform, and no or parallel stratiform.  We used the Waikato Environment for Knowledge 
Analysis (WEKA), a machine learning suite, to develop the decision trees (Witten and Frank, 2005).   

We constructed multiple decision trees with both morphological and reflectivity attributes for both the 
general and specific classifications.   The training and test data sets came from Advanced Regional Prediction 
System (ARPS) simulated reflectivity data (Xue et al., 2001, 2002, 2003), and we created an additional data set 
from a collection of composite reflectivity mosaics from the CASA IP1 network (Brotzge et al., 2006).   Overall, 
the best accuracy for the general type trees stayed in the 90% range for all three test sets indicating a very 
reliable classification tree.  By verifying the trees learned on simulated data with observations from the CASA 
network, we demonstrated that the knowledge gained from simulation can be applied to real situations. For the 
specific type, the accuracy ranged from 55% to 80% across the test sets, implying additional work is needed for 
improvement. 

 
 
1. INTRODUCTION 
 The taxonomy of storm classification 
presents many challenges even for human 
experts.  The nature of a classification system 
changes depending on how the storm is observed 
(Doswell et al, 1996). The definition of a 
mesoscale convective complex, for instance, 
requires infrared satellite readings (Maddox, 
1982). The limits of the observational tool also 
determine what storm types can be identified.  For 
example, researchers focusing their classification 
systems on rainfall measurements (Baldwin et al, 
2004), and radar returns (Steiner et al., 1995; 
Biggerstaff et al., 2000; Rigo and Llasat, 2004; 
Anagnostou, 2004), ignore a type like MCC and 
only use types visible from their specific data 

source. This project shares that limitation with 
previous work in its own focus on one variable – 
reflectivity – from one instrument, weather radar. 
 An automated system provides numerous 
advantages over manual classification.  When 
dealing with large datasets on the order of 
thousands or more storms, manual extraction from 
a data set is impossible in a reasonable amount of 
time.  With an automated system, however, an 
algorithm can quickly and efficiently iterate through 
the data processing information as needed.  
Without the burden of hand labeling, researchers 
can spend more time on data analysis. 
 Steiner, Houze, and Yuter (1995, SHY95) 
employed a technique that separated convective 
and stratiform areas using a combination of 



intensity and difference from background 
reflectivity (1995), a variation on the background-
exceedence technique (Biggerstaff et al., 2000).  
Anagnostou devised a different approach to the 
convective/stratiform divide by employing neural 
networks as a means to form multiple parameters 
into a separation function (2004).  Part of the 
proposed methodology requires a separation of 
convective and stratiform areas, but instead of 
searching for the convective areas and labeling 
the rest of the image as stratiform, we use Parker 
and Johnson’s (2000) definition of stratiform (20-
40 dBZ) to identify the stratiform regions.  We 
ignore regions with weaker reflectivity, and label 
regions with reflectivity above 40 dBZ as 
convective.   

Another form of storm classification 
involves identifying storm cell areas and following 
them while gathering information about their 
strength.  The Storm Cell Identification and 
Tracking (SCIT) algorithm does exactly this by 
finding reflectivity intensities that exceed 
thresholds for each of the seven tilts of the radar 
and then combining those tilts to find the cell areas 
(Johnson et al., 1998).  Then the cell areas are 
compared across time steps to detect motion.  The 
proposed methodology can also find cell areas, 
but since the main goal is to differentiate between 
storm types, we base our type on only one frame 
and do not track between frames.  In addition, we 
do not match the storm areas between tilts since 
this technique requires data from only one level.   

Our approach is most similar to Rigo and 
Llasat (2004).  They combined aspects of the 
SCIT and SHY95 algorithms and used the 
combination as the basis for a structural 
classification system.  Instead of using those 
storm areas to train an algorithm to automatically 
classify the storms in their dataset, they simply 
used the storm areas and statistics about them as 
guides when hand labeling each image.  They also 
only assigned one storm type to each image even 
if more than one storm appeared whereas multiple 
storm types were often found and labeled within 
our dataset. 

With this project we developed a structure-
based classification system similar to that 
proposed by Rigo and Llasat. The propsed 
algorithm incorporates two machine learning 
techniques, k-means clustering and decision trees, 
to identify and classify storm areas.   
The k-means clustering section of the project is 
derived from one used for image segmentation 
that had been applied to reflectivity 
(Lakshamanan, 2001; McQueen, 1967). Decision 
trees are structures that inductively sort a dataset 

by selecting attributes that lead to the most correct 
classification (Quinlan, 1986).   They have the 
advantages of simplicity and an efficient 
implementation. In addition, when decision trees 
undergo the learning process, they can choose 
variables that help reach the decision and ignore 
the extraneous ones.   
 
2. DATA AND METHODOLOGY 
 The data used for this project comes from 
both simulation and archived radar reflectivity from 
several storms in southwest Oklahoma. The 
simulations are generated by the Advanced 
Regional Prediction System (ARPS), a storm-
scale model with numerical weather prediction and 
data assimilation features (Xue et al., 2001, 2002, 
2003).  We have over 250 simulations of 
mesoscale storms generated in a supercell regime 
(Rosendahl 2007).  For this project, we examine 
the reflectivity at 4 km.  The simulations used a 
100 km by 100 km grid with 500 meter spacing.  
The reflectivity values of the simulated data tend 
to be higher than observed values of reflectivity 
because there is no attenuation or drop off in 
power with distance from the radar.   

Our second source of data came from the 
Center for Collaborative Adaptive Sensing of the 
Atmosphere (CASA) IP1 network, a group of four 
small, X-band Doppler radars located in southwest 
Oklahoma (Brotzge et al, 2006).  We mapped the 
reflectivity from each of the radars to a single 120 
km by 120 km Cartesian grid with 500 m grid 
spacing to fit the image as closely as possible to 
the ARPS simulated data.   
 To identify individual storm regions, the 
program first divided a given reflectivity image into 
a specified number of clusters using the k-means 
clustering algorithm.  To do this, the algorithm 
minimizes a Euclidean distance equation derived 
from the image segmentation algorithm of 
Lakshmanan (2001):   

22 )()()1(|| pmpmpme yyxxrrd −+−−+−= λλ
(Eq. 1) 
In Eq. 1 λ weighs the differences in reflectivity 
versus Cartesian coordinates, r represents the 
reflectivity value in dBZ at a certain point, x and y 
are the coordinates of that point, m designates 
variables derived from the list of means, and p 
designates variables derived from a point in the 
reflectivity image.  The first part of the equation 
seeks to find the distance of each point from the 
reflectivity means while the second part finds the 
distance between the selected point and the 
coordinates of the reflectivity means in the image.  
We chose a λ of .6 through empirical testing. K-



means clustering uses this similarity metric to find 
geographically similar areas with similar reflectivity 
readings.  We process the output of k-means 
clustering by breaking clusters that are not 
contiguous and by removing clusters whose area 
is less than 4km2. 
 We divide the clusters into convective, 
stratiform, or a low reflectivity areas.  If at least 70 
percent of the cluster contains reflectivity between 
20 and 40 dBZ, then it is considered stratiform.  
Otherwise, if less than 10 percent of the cluster 
contains reflectivity greater than 80 percent of the 
maximum reflectivity, then the cluster is 
considered a low reflectivity area.  If the cluster fits 
neither of those categories, then it is considered 
convective. 
Morphological Reflectivity Control 
Eccentricity 
Maj. Axis Len. 
Min. Axis Len. 
Orientation 
Equiv. Diam. 

Maximum 
Minimum 
Mean 
Std. Deviation 
Range 

Area 
Mean St. Dist. 

   
The decision tree attributes are shown in 

Table 1.  The morphological attributes come from 
fitting the storm region to an ellipse.  These 
include the coordinates of the centroid, the length 
of the major and minor axes, the orientation of the 

ellipse in relation to the major axis and the 
horizontal, and the eccentricity of the ellipse. The 
reflectivity attributes include the maximum, 
minimum, mean, standard deviation, and the 
range of the reflectivity.  The final attribute is the 
mean stratiform distance.  In order to calculate this 
value, the program finds the equation of the line 
along the major axis and sets it equal to the offset 
value that must be added to the line in order to 
have the point that is the mean of the cluster 
centroids go through the line.  It uses Equation 2. 

)()( sccsls yyxxmd −+−=  

(Eq. 2) 
In Equation 2 ml represents the slope of the line, 
the s values represent centroid coordinates of the 
stratiform cluster and c values represent the same 
for the convective clusters.  High positive values 
correlate more with the mean stratiform sitting in 
front of the convective area, values near 0 indicate 
that the mean stratiform center lies almost along 
the line, and high negative values indicate the 
mean stratiform lies behind the line.   
 Clusters are labeled within a hierarchal 
classification system that combines types 
developed by Parker and Johnson (2000) and 
Rigo and Llasat (2004).  At the highest level, 
convective areas are divided into cell and linear 
mesoscale convective system (MCS).  Within the 

Table 1.  Attributes used in decision trees. 
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Fig. 1.  The distributions of the four hand-labeled datasets used to train and test the decision trees. 
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cell category, the storms are then subdivided into 
non-severe cell, severe cell, and circular MCS.  In 
the linear MCS category, storms are divided into 
leading stratiform, trailing stratiform, and 
no/parallel stratiform.   
 The hand labeling interface provides the 
basic information required to visually classify 
storms.  It displays an image of the reflectivity on 
the left side and a diagram of the convective 
cluster locations on the right side.  From here 
when a clustered storm appears on the screen, we 
can select an individual cluster and then choose 
the appropriate classification for it from a pull 
down menu.  Two meteorology students 
performed the hand labeling.  Non-severe cells 
tended to be small areas of light to moderate 
reflectivity.  Severe cells tend to be isolated areas 
of high reflectivity combined with other features 
indicating a powerful storm such as an 
overshooting top or a hook echo.  Circular MCSs 
were generally clusters that contained multiple 
areas of high reflectivity intermixed with weaker 
reflectivity.  Since the reflectivity image for the 
ARPS data is centered on the main storm rather 
than on a fixed point making the actual direction of 
storm motion impossible to determine, a stratiform 
area to the east of the storm is considered leading 
while one to the west is considered trailing.   
 To form the training and validation sets of 
the storms, we hand labeled five random time 
steps from each of the ARPS simulations.  The 
decision trees were learned using the Waikato 

Environment for Knowledge Analysis (WEKA) 
version 3.5.6, developed by the University of 
Waikato in New Zealand (Witten and Frank, 2005) 
was used to generate the decision trees.  WEKA is 
a suite of various machine learning and data 
mining algorithms.  For the purposes of this 
project, we used the data in WEKA to generate 
eight decision trees based on different 
combinations of statistical values from the storm 
data.  We generated decision trees for the general 
and specific storm types based on the 
morphological and reflectivity-based variables, just 
the morphological, just the reflectivity, and a 
control tree given only area and mean stratiform 
distance. 
3. RESULTS 
 Figure 1 shows the distribution of the 
ARPS training data.  Because of the regime used 
to generate the simulations, the storm types  focus 
on isolated severe and isolated non-severe 
categories with 387 of the 519 storms falling into 
one of those two areas.  The rest of the storms 
were almost evenly distributed across circular 
MCS, leading stratiform, and trailing stratiform.  
None of the storms in the training set were labeled 
as no stratiform.  ARPS data set 1 contained a 
similar distribution of storms but in a much smaller 
number as it was randomly drawn from the same 
set as the training data.  ARPS set 2 contained an 
even higher proportion of isolated severe and non-
severe storms and very few of the other types.  
The CASA set featured a higher proportion of 

Fig. 2.  This chart compares the accuracies of the eight different trees used in the study.  The general trees (GC, GM, 
GMR, and GR) overall have a higher accuracy than the specific trees (SC, SM, SMR, and SR). 



Fig. 3. This chart compares the area under a receiver operating curve (AUC), a measure of the classification system’s 
reliability.  Values near 1 indicate strong classification ability, at .5 indicate the same ability as a random classifier, and less 
than .5 indicate ability worse than random. 

isolated non-severe and leading stratiform storms, 
but it only held a total of 34 storms from three 
days. 
 WEKA learned eight decision trees based 
on different combinations of attributes.  Trees 
designated as control (C) used only area and 
mean stratiform distance in their generation 
process.  Morphological trees used the control 
attributes plus the morphological attributes derived 
from fitting the storm area to an ellipse. Reflectivity 
trees (R) used the control attributes reflectivity-
based attributes.  Morphological and reflectivity 
trees (MR) used all three classes of attributes. 
 We evaluated all the test sets on the eight 
different decision trees learned by WEKA.  First 
we examined the overall accuracy of each tree 
(Fig. 2).  The morphological and reflectivity tree 
(GMR) and the morphological (GM) tree had the 
highest mean accuracy at 90.39% while the tree 
that only used reflectivity attributes (GR) had the 
lowest mean accuracy at 82.17%.  For the specific 
tree types, the one with the highest mean 
accuracy used the morphological attributes (SM) 
at 65.695% while the lowest came from the tree 
that used only reflectivity (SR, 62.06%). 
 To compare the performance of the trees 
on the different storm types we used area under 
the Receiver Operating Characteristic (AUC) curve 
(Bradley, 1997), which is a performance measure 
derived from plotting the probability of a true-
positive result versus the probability of a false-
positive result and finding the area under the 

resulting curve.  The values range from 0 to 1 with 
values near 1 indicating a strong classification 
ability, values of .5 indicating that the classification 
system works no better than randomly choosing 
classes, and values of less than .5 indicating that 
the classification scheme is worse than random.  
For the general type trees (Fig. 3), the cell 
morphological and linear MCS morphological trees 
performed the best in both cells and linear 
systems with a mean AUC value of .912.  This is 
averaged over all test sets.  The lowest mean 
AUC for the general types, .836, came from the 
cell reflectivity and linear MCS reflectivity trees.  
When the AUC for each type was compared 
across the different datasets, there was very little 
difference in the AUC values. 

Within the isolated severe cell type (Fig. 
4), control, morphological, and reflectivity ranged 
from .802 to .782 while morphological and 
reflectivity combined had a lower value of .743.  All 
the isolated non-severe storms performed 
between .85 and .89.  For the circular MCS 
storms, three of the four trees received an AUC in 
the low .8s, but the morphological value lay at 
.689, much lower than the rest.  Across each 
linear type (Fig. 5), there was little variance 
between each tree in each set although leading 
stratiform performed better than trailing stratiform.  
4. DISCUSSION 
The trees containing morphological attributes  
perform just as well as the trees containing both 
morphological and reflectivity attributes and better 

Mean AUC for General Types

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C CM CMR CR LMCS LMCSM LMCSMR LMCSR

General Types by Tree

A
U

C



Fig. 4. This chart compares AUC among cell types.  Little variance exists across the different tree types in each cell 
type except for the circular MCS (CMCS).  The circular MCS morphological tree has a noticeable drop in performance 
in comparison to the other trees. 
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Fig. 5. This chart compares the mean AUC among the two linear MCS types found in the data.  There is little variance 
within each type, indicating that one of the control variables most affects the tree performance on that type. 

Fig. 6.  This chart compares the AUC among the datasets for the general types. 
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 perform just as well as the trees containing both 
morphological and reflectivity attributes and better 
than the ones only containing reflectivity attributes. 
The mean AUC for cells and linear systems does 
not vary significantly across the three datasets 
(Fig. 6).  The fact that the tree learned using 
simulated data performed well on actual radar 
data (the CASA IP1 data) is critical as it means the 
trees were general across both simulated and 
observed data. 
 When analyzing the performance of the 
specific type trees, the influence of the reflectivity 
variables becomes more apparent.  This is 
especially true for the circular MCS morphological 
tree, which has a much lower AUC than the 
circular MCS morphological and reflectivity and 
circular MCS reflectivity trees, indicating one of the 
reflectivity-based variables is the determining 
factor for this storm type.  The same relationship 
exists for isolated non-severe.  With isolated 
severe, however, the dip occurs with the MR tree.  
For the two linear types, the ROC area varies little 
across each type, indicating that the attribute for 
determining line type was one of the control 
attributes, area or mean stratiform distance.   
5. CONCLUSIONS 
 We have found that decision trees are a 
viable method for automatically determining storm 
type.  The trees that distinguished between cells 
and lines had a high AUC and accuracy across all 
datasets, indicating strong performance overall.  
The more specific trees experienced decreasing 
performance across datasets, which is an area for 
future work.  Even though we learned the trees on 
simulated data, they were still able to classify real 
world data (the CASA data) with a high degree of 
accuracy in the case of the general type tree.  In 
addition, because the decision trees are selective 
and human readable, we could determine that the 
morphological attributes were most critical to 
successful classification. 
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