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Abstract

This study investigates two bias correction methods, lagged average and lagged
linear regression, for individual members of ensemble forecasts. Both methods use the
forecast bias from previous forecasts to predict the bias of the current forecast at every
station. Also considered isthe training period length that resultsin the smallest forecast
error.

Ensemble forecast and verification data span 23 July through 15 September 2003.
The data are organized into a mini-ensemble composed of 5 models and 30 days. This
mini-ensemble is corrected using each method of correction for training period lengths
between 3 and 12 days. The resulting bias, mean absolute error, RM S error, and inter-
guartile range of the corrected forecasts are then compared.

Forecasts corrected with the lagged linear regression method are less biased but

have more variance than those corrected with the lagged average method.



1. Introduction

Ensemble forecasts are currently used to predict atmospheric variables such as
temperature, dewpoint, and wind speed. They are useful because they can provide more
information than deterministic forecasts. An ensemble forecast is made up of several
members, each of which areindividua solutions (Manousos 2004). Each ensemble
member is either generated by a different numerical model of the atmosphere, hasits own
initial conditions, or has different governing physics than other members from the same
numerical model (Hamm 2003). The resulting ensemble is generally more accurate if
each ensemble member is bias corrected. Hamm (2003) determined that “ bias correction
IS an important post-processing step for the NCEP SREF,” but bias correction methods
have not been themselves examined in previous studies. The purpose of this study isto
investigate two methods of bias correction, the lagged average (Stensrud and Y ussouf
2003) and alagged linear regression correction.

Thetraining period is defined as the number of days used for the bias correction.
A training period that is too short may not provide enough information about the bias
characteristics of each model, and atraining period that is too long may not account for
short-term variations or trends. The optimal training period may depend on the numerical
model, geographic location, season, and parameter.

Therest of this paper is organized as follows. ensemble forecast data is described
in section 2; the methodol ogy through which the bias correction methods and training
period lengths were cal culated and compared is described in section 3; results of the
study are described in section 4; section 5 contains a discussion of implications,

drawbacks, limitations and interesting results; and section 6 contains conclusions.



2. Data

For this study, a combination of 5 members was selected from an overall data set
of 31 members. The data cover 55 days, from 23 July to 15 September 2003.

The entire set of 31 ensemble members comes from three sources: National
Center for Environmental Prediction (NCEP), National Severe Storms Lab (NSSL), and
Forecast Systems Laboratory (FSL). The ensemble members generated by NSSL and
FSL are experimental, and so frequently unavailable. Twenty-one of the ensemble
members are based on variants of the Etamodel (Mesinger; Janjic et al. 1988), seven on
the Regiona Spectral Model (RSM), two on the Rapid Update Cycle (RUC) model, and
two on the Weather Research and Forecast (WRF) model.

Theinitial 31 ensemble members are not all used because many of the
experimental members are frequently missing (Fig. 1). To obtain a contiguous set of
forecasts, members that miss runs for alarge proportion of days are excluded; then, days
that have avery small proportion of runs are excluded (Fig. 2).

The winnowing process continues until there is a contiguous block of member
runs. The most reliable members come from the NCEP Short-Range Ensembl e Forecast
(SREF) because thisis an ensemble that is amost operational.

Forecast data are provided on the AWIPS 212 grid, which has an 80 km grid
spacing. But, forecasts are verified at specific locations (observation sites). Hence, bi-
linear interpolation is used to interpolate forecast value to specific, verifying locations.

Initial conditions for all the members used here useinitial perturbations generated

from the breeding method (Toth and Kalnay 1993). The breeding method is used to



generate perturbations that will grow most rapidly. In most cases, asingle model can
yield five members: a control run, two positively perturbed members and two negatively
perturbed members.

Twenty-two members come from the NCEP SREF. All SREF members are
initialized at 0600 UTC each day and use 32-km grid spacing. Seven members are from
the RSM, and use two different physical parameterizations between them (only one of
which isused). The RSM-SAS (Simple Arakawa-Shubert convection (Arakawa and
Schubert 1974)) uses all five initial condition perturbations (RSM1, RSM2, RSM3,
RSM4, and RSM5). Thefirst 5 RSM members follow the naming convention used
throughout this data. RSM 1 uses the control initial conditions, RSM2 and RSM 3 use the
negatively perturbed initial conditions, and RSM4 and RSM5 use positively perturbed
initial conditions.

Eta-KF (Kain-Fritsch convective scheme (Kain and Fritsch 1998)) and Eta-BMJ
(Betts-Miller-Janic convective scheme) each use all 5 perturbations. These are,
respectively, EKF 1-5 and EBM 1-5.

The last two members used are from the Eta model with varying initial conditions
and physical parameterizations. Eta-RAS-Mic (ETA4) uses an experimental Ferrier
Microphysics with Relaxed-Arakawa Shubert convective parameterization with
positively perturbed pair two initial conditions. Eta-KF-CON (ETAS) uses an
experimental Ferrier microphysics with more frequent calls to cloud water condensation
and ice deposition and Kain-Fritsch convective parameterization, and it uses positively

perturbed initial conditions.



3. Methodology
a. Preparing the data

The first task in the project isingesting the datainto S-Plus (Insightful Corp.
2004). The data are organized according to the source model, station identifier, date, and
variable. The evaluated variables are 2-m temperature, 2-m dewpoint, and u and v wind
components. The verification data are organized similarly.

Whileindividua model runs start at varying times, the goal isfor all of them to
constitute asingle ensemble. To accomplish this, data are categorized by verification
time. Because some ensemble members start at 1200 UTC, thisis used asthe time
chosen for the start of the entire ensemble forecast each day. The earliest forecast from
the latest member isfor 6 h, thus the first forecast from the ensemble each day verifies at
1800 UTC that same day. Output is available every 3 h after theinitial 6 h forecast,
through 48 h, or 1200 UTC on day 2, though only the first 24 h are evaluated here.
However, each ensemble forecast is made up of member forecasts for various lengths of
time. For example, a12 h ensemble forecast is made up of 5 memberswitha 12 h
forecast starting at 1200 UTC, 13 members with an 18 h forecast starting from 0600
UTC, and 4 members with a 24 h forecast starting from 0000 UTC the previous day.
Thisintroduces additional diversification into the ensemble by having members with
initial conditions when the atmosphere was in different states.

Bias correction requires that each forecast be accompanied by a verification value
or observation. Thus, missing data are problematic. The most common cause of missing
datain this study is missing model runs. To facilitate processing, members and days are

eliminated until there is a contiguous data set with no missing members. A result of this



method of data reduction isthat the available forecasts are not continuous in time (Fig.
2). Yet, even these steps do not ensure contiguous data, because observations are

frequently missed, which results in missing verification values.

b. Analysis

Two bias correction methods are evaluated in this study: lagged average and
lagged linear regression. Both bias correction methods use the bias from forecasts on
previous days to calibrate each member individually, at each location. To compare these
two approaches, mean bias, mean absolute error (MAE), and root-mean-square error
(RMSE) are used. Biasisthe difference between the corrected forecast and its
verification, MAE uses the mean absolute value of the bias, and RM SE is the mean of
square root of the sum of the squared bias. Forecasts from New England are used to
evaluate the two methods so they can 1) be easily compared with Stensrud and Y ussouf
(2003), and 2) to reduce the computational burden.

The lagged average bias correction method has been used in the past (e.g.
Stensrud and Y ussouf 2003), and is a simple bias correction where prior biases over some
training period are averaged, and this average is applied as a correction to the current
forecast (Fig. 4a).

In contrast, the lagged linear regression method uses is a least-squares line to
model the trend in the bias of the forecasts over the training period at each location. Both
methods are tested for training periods between 3 and 12 days (Fig. 4b).

For lagged linear regression, at |least two data points are necessary or aline cannot

be calculated. Y et, with only two data points, least squares has no meaning. Asaresult,



the training period must be at least 3 days (preferably longer). Missing data are ignored
such that a missing day reduces the effective length of the training period. In no case
does the training period contain less than three days. For agiven training period,
locations are excluded for which the number of daysisless than there are for a given
training period. The number of locations with sufficient data for the lagged linear

regression method increases with longer training periods (Fig. 3).

4. Results

To compare the bias correction methods, mean biases, MAES, and RMSEs from
al locations are plotted as a function of training period length and also of forecast time
for each variable. Each plot shows the mean and inter-quartile range (IQR) of the error
statistic for each method. The bias distributions from each correction method are also
compared. Analysis of the bias distributions for all forecasts at a specific training period
length for one variable at time 12 (verifying at 0000 UTC) shows differences between
bias distributions of forecasts corrected with lagged average and lagged linear regression
(Fig5). Biasesfrom the lagged average method are more narrowly distributed than those
from the lagged linear regression method for smaller training period lengths. But, for
longer training period lengths, these bias distributionslook similar. Thisisthe case for
all variables.

Plots of mean and IQR of these distributions alow comparison of distribution
characteristics (Fig. 6). For smaller training periods (about 3 to 7 days), forecasts

corrected with lagged linear regression have mean biases smaller than those corrected



with lagged average, but larger IQR. In many cases, this IQR is larger than that for
uncorrected forecasts. Forecasts corrected with the lagged average method usually have
asmaller mean bias and smaller IQR than the uncorrected forecast bias distributions.
With longer training periods, the IQR of for the lagged linear regression decreases, while
increasing for the lagged average method. Both methods yield similar IQR for the
longest (10 to 12 days).

For most variables, MAE is lower for forecasts corrected with the lagged average
method than those with the lagged linear regression method (not shown). Lagged
average MAE increases with training period length, while lagged linear regression MAE
decreases with training period length. RMS errors show similar trends (not shown).

While these bias error distributions for long training periods look similar for both
methods, a Komolgorov-Smirnov goodness-of-fit test is used to investigate further. Bias
distributions from the 12 h forecast, valid at 0000 UTC on day 1, for all variables are
investigated. Between the two methods, a distributions are distinct at p = 0.05. Within
each method, only the v-wind biases corrected with the lagged average method for
training period lengths of 5 and 6, and also for training periods 10 through 12, are
indistinguishable at p = 0.05.

Plots of error statistics as a function of forecast time (Fig. 7) show forecast bias
and 1QR increase with forecast time for both methods, as do the uncorrected forecast
biases. Thisindicates that overall skill decreases for longer forecasts. The only variable
that does not display this general increase over the first 24 h isv wind component.

Overall biases for the v component behave differently form the others over the

experimental period. Unlike the other variables, the resulting bias of v component
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forecasts using the lagged average method shows a persistent negative bias, and is often
worse than no correction at all. In contrast, the lagged linear regression method does a
good job at removing systematic bias (Fig. 8a). A time series of uncorrected biases
reveals that over the experimental period (23 July to 9 September, in this case),
uncorrected forecast biases drift from positive to negative (Fig. 8b). Thistrendis
corrected by the lagged linear regression method, but the lagged average method
frequently predicts that the bias will be more positive than observed and so introduces a
systematic error in the ensemble. Thus, in this case the lagged linear regression is clearly

more desirable than the lagged average.

5. Discussion and Conclusions
This study issmall in scalein that it only studies an ensemble of 5

members over 73 stations in New England, and for less than two months of the warm
season. An investigation on alarger scale could produce more general results. In
general, forecasts corrected with the lagged linear regression method are |less biased but
have more variability than those corrected with the lagged average method. Differences
in bias hold for all training period lengths, but differencesin variability decrease as
training period increases.

Effects of variables other than training period on the bias correction methods
should be studied aswell. Some variables that may affect the bias corrections are
geographic location and season. Also, training periods longer than 12 days may be

useful.
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To know which of these methods yields the best ensemble performance requires a
careful application of rank histograms (Hamill 2001). Time constraints prevented this
next, obvious step.

Though this investigation does not yield conclusive results about which of the two
methods is better, there is enough evidence to allow reasonable speculation. Hamm
(2003) found that bias corrections can reduce the under-dispersiveness of ensembles.

The lagged linear regression has potential to do this, because it often increases the
variability (IQR) of members. The main purpose of bias correction isto remove bias
from the ensemble as awhole. Since lagged linear regression does a good job of
removing bias from members on average, it will probably help remove it from ensembles
aswell.

The effect of lagged average and lagged linear regression bias corrections on
ensemble performance is not evaluated here. As stated earlier, evaluating ensemble

performance requires, as a start, analysis of rank histograms (Hamill 2001).
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Captions

Fig. 1. Modd runs available at al times. Gaps in data necessitated winnowing of data
Set.

Fig. 2. Days of data used in study (2003).

Fig. 3. Locations with enough data to use the lagged linear regression correction method.
Bottom axisistraining period length.

Fig. 4a. Schematic of lagged average bias correction method for training period length of
10. Triangleis predicted bias for the current forecast, and the actual biasis just
aboveit.

Fig. 4b. Schematic of lagged linear regression bias correction method for training period
of 10 days. Plus-signis predicted bias for the current forecast from the lagged
linear regression correction method. Actual biasisjust below it.

Fig. 5. Left column islagged average method; right column is lagged linear regression.
Top histograms are training period length 3, bottom are 12. Vertical lineisO.
Plots for forecast time 12 (verifies 0000 UTC). 5a. is corrected temperature
forecast bias, b. isdewpoint, c. isu-wind, and d. is v-wind.

Fig. 6. Forecast bias as a function of training period length.

Fig. 7. Forecast bias as afunction of time.

Fig. 8a. v-wind forecast bias as afunction of time. Notice that the lagged average
method produces forecasts with a consistently negative bias.

Fig. 8b. v-wind EKF2 forecast biases at SFM (Sanford, Maine). Notice that they

decrease on average throughout the time the forecasts were studied.



Figures

Member Runs Available at all Times
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Temperature Bias for 12 h Forecast (verifies 0000 UTC)
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EKF2 vewind Forecast Bias far SFM (Sanfard, Maine)
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