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Abstract: 
The understanding of precipitation field evolution is valuable to radar nowcasters 

and weather modelers.  Precipitation field evolution can be evaluated with a decorrelation 

time that corresponds to how quickly the precipitation field changes from its initial state.  

Longer decorrelation times are associated with temporally consistent precipitation fields, 

while short decorrelation times are associated with rapidly changing precipitation fields.  

The decorrelation times for 246 cases from 1 March 2004 to 6 June 2004 were 

determined using both Eulerian and Lagrangian perspectives.  Lagrangian decorrelation 

times were nearly 4 times longer than Eulerian times, on the average.  No strong linear 

relationships were determined between the shear and instability parameters collected 

from nearby observed soundings and the decorrelation time.  To further the analysis, 

Lagrangian decorrelation times were divided into long-lived (decorrelation time > 5 h) 

and short-lived (decorrelation time < 5) cases.  This being done, specific short cases with 

high CAPE and low helicity could be separated from the long cases.  Long cases typically 

had lower CAPE and higher helicity values, but there were as many short cases meeting 

these criteria, making discrimination between long-lived and short-lived events difficult 

in those cases.   
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1. Introduction 
 How long is it going to continue raining?  Predicting precipitation accurately is an 

arduous task for two primary reasons.  First, it is impossible to know exactly the state of 

the atmosphere at a given time.  Second, the equations describing atmospheric motion are 

not perfectly known due to the chaotic and nonlinear nature of real fluid systems (Lorenz 

1969).  Because of the two aforementioned facts, precipitation fields are difficult to 

properly extrapolate into the future.  For proper extrapolation of precipitation fields, 

advection, growth, and decay of the precipitation field must be determined. 

 The relationships between environmental parameters and the evolution of 

precipitation fields are not clearly understood.  However, it is not unprecedented to 

investigate how shear and instability parameters are associated with atmospheric 

phenomenon.  Parameters such as convective available potential energy (CAPE), helicity 

(Hr), shear, and water vapor content have been shown to impact the discrimination 

between tornadic and nontornadic low level mesocyclones (Brooks et al. 1994).  In 

addition, derecho and nonderecho systems are somewhat distinguishable by examining 

proximity soundings for shear and instability parameters, when divided into synoptically 

strongly- or weakly-forced categories (Evans and Doswell 2001).  More closely 

associated with this project, Zawadzki and Ro (1978) found a relationship between higher 

surface-based CAPE (SBCAPE) values and maximum precipitation rates.  Also 

Zawadzki et al. (1981) discovered that both mean and maximum rain rates are correlated 

with thermodynamic parameters.  It has yet to be determined clearly to what extent shear 

and instability parameters can be used to classify precipitation events into long, 

continuous episodes and shorter-lived, rapidly changing systems.   



 

 4

The question remains whether spatio-temporal coherence of precipitating systems 

is related to instability and shear parameters.  The purpose of this paper is to determine 

which shear and instability parameters are most closely associated with the movement 

and development of precipitation fields, by analyzing how sounding-based parameters are 

related to precipitation field decorrelation time.   

2. Literature Review 
 Previous work that examined precipitation decorrelation time did not reveal 

strong relationships between decorrelation time and synoptic or mesoscale parameters.  

That being noted and evaluated further in this work, some studies have suggested that 

specific mesoscale parameters should stabilize a precipitation event and therefore 

increase its decorrelation time.  For example, Lilly (1986) suggested that high levels of Hr 

should result in long-lived, coherent convective precipitation events, but this has not been 

analyzed in relation to a large data set of precipitation decorrelation times.   

Zawadzki et al. (1994), in an �exploratory study,� made an attempt to relate specific 

parameters with decorrelation times.  While this study was the first of its type relating 

decorrelation times with specific environmental parameters, it only studied 11 warm 

season precipitation events and did not use a large composite of radar data.  In Zawadzki 

et al. (1994), parameters such as vertical distribution of thermal advection, wind shear 

energy, and geostrophic vorticity showed no clear relationship with decorrelation time.  

However, some relationships were noted.  A linear relationship between decorrelation 

time and CAPE was found, with an R2 value of 0.37 (at the 5% significance level).  A 

linear relationship between decorrelation time and the ratio of CAPE to Hr was also 

determined, with an R2 value of 0.85, but this data set was limited to 5 events where the 

CAPE values were above 850 J kg-1.  Finally, a multilinear regression revealed a 
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relationship between Hr and ln(CAPE), and decorrelation time, with an R2 of 0.44 (at 5%-

10% significance level).  These relationships will be investigated further in the present 

study by examining more cases and using national composite radar.  

Beyond mesoscale and synoptic parameters, Germann and Zawadzki (2002) 

investigated how Eulerian and Lagrangian perspectives change the decorrelation times 

for precipitation systems.  In that study, Eulerian lifetime determination involved no 

forecasting of precipitation fields, but involved simply correlating the initial field with 

the observed field at some later time.  The Lagrangian decorrelation time determined was 

not how quickly the system decorrelated from its fixed initial state, but how quickly the 

system decorrelated from a Lagrangian forecast, that is, the initial field advected by a 

predicted wind field.  The decorrelation values for the 2002 study were determined by     
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where oI is the mean of the precipitation field coverage at the initial time, and fI is the 

mean of the precipitation at the forecast time. The decorrelation time, or lifetime (L), is 

defined as: 

                                                           ( )∫
∞

=
0

ττ dcL                  (2) 

When ( )τc  follows an exponential law, as in this case, L is the time when the correlation 

drops below 1/e, or about 0.37. 

 Germann and Zawadzki (2002) found Lagrangian decorrelation times to be nearly 

twice as long as Eulerian decorrelation times.  However, that study only examined four 

cases that were large in coverage area, using a square of radar analysis 2720 km x 2720 
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km.  Germann and Zawadzki (2002) noted how decorrelation times decrease at smaller 

scales of radar resolution as the result of small scale disturbances in motion.  Because 

Lagrangian decorrelation took twice as long as Eulerian, the study revealed that 

advection explains a significant part of the variation in the precipitation rate at a given 

location.  Germann and Zawadzki (2002) also found that predictability increases as the 

scale of interest increases, and the smaller, thunderstorm scale is filtered out.  While the 

current study examined the thunderstorm scale, it was in the hope of using proximity 

sounding data to characterize near storm environments and to see how decorrelation 

times relate to this smaller scale.  The aim of this project was to investigate a range of 

scales, not leave smaller scales unexamined. 

3.  Data and Method 

a. Data Description 

Precipitation events between 1 March 2004 and 6 June 2004 were chosen from 

University Corporation for Atmospheric Research�s (UCAR) case selection database 

(http://locust.mmm.ucar.edu/case-selection).  This website contained national composite 

radar data in roughly l h intervals, except in specific cases where gaps in the composite 

data existed.  Significant precipitation patterns near United States sounding locations east 

of the Rocky Mountains close to 00 UTC were noted.  Both the initial time a storm was 

present near a sounding (approximately 328 km (200 mi) from the sounding) and the time 

the storm seemed to dissipate or move more than 328 km (200 mi) from the sounding 

location were recorded for the dataset.  Domain size was chosen to be small enough that 

the near storm environment could be adequately measured by the sounding, but large 

enough that decorrelation and dissipation of the storm could be sufficiently monitored.  

http://locust.mmm.ucar.edu/case-selection
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This size was also used because it is roughly equivalent to the average spacing between 

sounding locations.  The soundings were thus considered representative of the 

environment in which the storm evolved.  Completeness of sounding parameters was 

required to include a case in this study.  If a case�s available parameters were incomplete, 

the case was not used in this study.   

Once the locations and beginning times were determined, Stage IV radar data 

(Fulton et al. 1998) with rainfall hourly accumulations based solely on reflectivity were 

used for the correlation calculations.  Stage IV data is available in hourly intervals at 4 

km resolution.  A limitation of this data set is correlation values can be computed only at 

hourly increments.  If shorter observation intervals were possible, this would increase the 

accuracy of decorrelation time calculations.  

Sounding-based shear and instability parameters were collected for each event.  

Each sounding was visually examined for signs of convective contamination.  Such 

soundings represent the storm (or post-storm) environment and not the environment the 

evolving precipitating system encounters as it progresses and evolves.  Cases with 

contaminated soundings were therefore eliminated from the data set.  This reduced the 

data set from 246 to 147 cases.  

The instability measures collected were SBCAPE (J kg-1), mixed-layer CAPE 

(MLCAPE; J kg-1), most unstable CAPE (MUCAPE; J kg-1), 850-500 mb lapse rate (°C 

km-1), and 700-500 mb lapse rate (°C km-1).  The shear parameters collected were 0-1 km 

Hr (m2s2), 0-3 km Hr (m2s2), and 0-6 km shear (m s-1).  Along with these parameters, the 

amount of precipitable water (PW; mm) and the maximum average precipitation were 

determined for each case. 
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b. Decorrelation Time 

The correlation used in this study is how closely two precipitation fields resemble each 

other based on:  

 ( )
22
τ

ττ
II

IIc
i

i=     (3) 

Where Ii is the initial precipitation field, Iτ is the precipitation field at time τ, and c(τ) is 

the correlation value at a specified time, τ .  Notice that the mean is not subtracted from 

the precipitation fields, as zero precipitation is the �only meaningful reference value� 

when evaluating precipitation systems, because the average would be always nonzero and 

very small (Turner et al. 2004).  The correlation values are used to determine a 

decorrelation time or lifetime for each event.  This decorrelation time was defined as the 

time, τ, at which the correlation value drops below 0.5, as used in Zawadzki et al. (1994).  

Linear interpolation was used to estimate decorrelation times between hourly data 

available (Figs. 1 and 2).   

 The grids for precipitation field analysis that were correlated with one another 

were 644 km (400 mi) by 644 km (400mi) squares, with the sounding location as the 

center point of the initial grid for precipitation analysis. 

Eulerian Lifetime Determination 

 The lifetimes of precipitation fields meeting the established criteria 

(nonconvective and complete sounding-based parameters) using an Eulerian persistence 

model were determined.  Using equation (3) as the method for determining correlation 

between fields at hourly intervals, decorrelation time was estimated (Fig. 1).  The 

Eulerian method of lifetime determination used the sounding location as the center point 
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for every precipitation field correlation calculation.  No advection scheme was used to 

change the center point with time. 

Lagrangian Lifetime Determination 

 The lifetimes of precipitation fields meeting the established criteria were also 

determined using a Lagrangian advection scheme.  The goal of the advection scheme was 

to follow the initial precipitation field as it advected through the composite of radar 

coverage.  Unlike Germann and Zawadzki (2002), no attempt was made to forecast 

precipitation fields by shifting the initial field in a particular direction based on an 

extrapolation of the wind field.  The method of translating used here is less sophisticated 

than their extrapolation.   

For each hour beyond the initial time, the precipitation field to be correlated with 

the initial precipitation field grid was determined by shifting the grid by at most 100 km.  

Every hour, the grid was shifted to a new center point in which the lowest root mean 

square error between the new precipitation field and initial field was obtained.  The 

center point shifts were examined to guard against egregious shifts, i.e., reverting back to 

new precipitation entering the domain.  Once a new center point for that next hour was 

found, the correlation was calculated using equation (3).  If this value was below 0.5, 

then correlation values were no longer determined.  If this value remained above 0.5, the 

process continued to the next hour, where a new center point was determined as the 

location with the lowest root mean square.  By this method, only observed precipitation 

fields were correlated with other observed precipitation fields.  This method differs 

slightly from the other work involving precipitation decorrelation (i.e. Zawadzki et al. 
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1994, Germann and Zawadzki 2002, Turner et al. 2004), because in this case, no wind 

field extrapolation was done.   

c. Regression Analysis 

Linear Regression 

Simple linear regression experiments using decorrelation time as the dependent 

variable and various sounding-based parameters as the independent variables were 

performed.  This analysis was done for both Eulerian lifetimes and Lagrangian lifetimes.  

In addition, cases where SBCAPE=0 J kg-1 and MLCAPE=0 J kg-1 were eliminated, and 

the sets were analyzed once again.  These regressions created a least squares fit line with 

a correlation value, R2, which measured the strength of the relationship between each 

parameter and the decorrelation times. 

Logistic Regression 

 Because linear regression results showed weak relationships between lifetimes 

and parameters (Table 1), logistic regression (Wilks 1995) was used to attempt to 

discriminate between long-lived and short-lived events.  Logistic regression requires a 

binary predictand, usually a yes/no outcome.  For this reason, the Lagrangian lifetimes 

were categorized as long (lifetime > 5 h) or short (lifetime < 5 h).  This 5 h limit was used 

because it indicates events that were at least 1 h longer than average.  Furthermore, note 

in the distribution of Lagrangian lifetimes shown in Fig. 4 the density of points above the 

5 h threshold is substantially lower than density of points below that mark.  Logistic 

regression fits the variables of linear regression to a nonlinear equation (which produces 

an S-shaped curve): 

]exp[1
1

110 xbb
y

++
=)      (4) 
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Using this method the dependent variable values are now probabilities that will never 

exceed one, but should change as the independent variable changes, if there is any 

predictive skill in the independent variable.  In this case, a higher probability should 

mean a greater likelihood of a long-lived event.   

d. Linear Discriminant Analysis  

 Another technique for classifying or discriminating different types of events, 

linear discriminant analysis (LDA), was used.  Pairs of parameters are arranged into data 

matrices, one containing the two parameters for long-lived precipitation events, and 

another containing the same two parameters for short-lived precipitation events.  The end 

result of LDA is a line in the two-parameter space that attempts to separate the long-lived 

events from the short-lived events based on the means and variances of their respective 

parameter sets (Appendix A and Wilks 1995). 

 The LDAs with relatively high Peirce Skill Scores (PSS; Peirce 1884) were then 

examined more fully, as described below.  The PSS is the difference between the 

probability of detection (POD) and the probability of false detection (POFD) (Richardson 

2000).  POD is the ratio of the number of events classified correctly by LDA as �long� to 

the number of observed long events.  POFD is the ratio of the number of events classified 

as �long� but observed as �short� to the number of observed �short� events (Doswell et 

al. 1990).   

 Using the discriminating line in the two-dimensional parameter space, a relative 

operating characteristic (ROC) curve was created (Mason 1982). By shifting the y-

intercept of the LDA formally created line, new PODs and POFDs may be determined 

(See Section 4.d).  The set of (POFD, POD) pairs (each associated with a different y-
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intercept) can then be used to form a ROC curve.  First, the area under each ROC curve 

was determined with the points from all the y-intercept changes.  After this method 

produced curves that were not smooth, the points that caused concavity were eliminated 

and the area under the curve was recomputed, giving the area beneath the ROC convex 

hull (Provost and Fawcett 2001).  All areas were calculated using the trapezoidal rule.   

4. Results 

a. Decorrelation Time  

Figures 1 and 2 show the correlation functions for a few sample cases using the 

Eulerian and Lagrangian approaches, respectively.  The average Lagrangian decorrelation 

time was near 4 h, while Eulerian decorrelation times averaged just greater than 1 h.  The 

correlation values decreased nearly linearly with time, validating the use of linear 

interpolation for estimating decorrelation time (Figs. 1, 2).  Many Eulerian decorrelation 

times were below 1 h.  Because the radar mosaics were only in hourly increments, these 

Eulerian decorrelation time interpolations may not be good estimates of true 

decorrelation from the initial state.  Still, this 4 to 1 ratio between average Lagrangian 

and Eulerian lifetimes differs substantially from the Germann and Zawadzki (2002) 

results that Lagrangian estimates were roughly twice as long as Eulerian lifetimes.   

b. Linear Regression 

The linear regression analysis experiments revealed no strong correlations 

between the sounding-based parameters recorded and the Eulerian or Lagrangian 

decorrelation times.  However, certain parameters were more correlated than others, with 

Eulerian lifetimes having greater correlations to some parameters than did Lagrangian 
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lifetimes (Table 1).  Even the highest correlation values were quite weak, with 0-1 km Hr 

showing the strongest correlation with Lagrangian lifetime, R2=0.12 (Fig. 3). 

c. Logistic Regression 

Because Eulerian lifetimes were closely grouped and many had lifetimes slightly 

less than one hour, they were not analyzed using logistic regression.  The Lagrangian 

lifetimes were divided into short and long data sets for logistic regression as described in 

Section 3c and Wilks (1995).  This had very little discriminating power to separate long 

events from short events, but was able to group a selection of cases that were always 

short.  When the ratio of MUCAPE (J kg-1) to 0-1 km Hr (m2s2) is greater than about 50, 

the observed precipitation events had decorrelation times less than 5 h (Fig. 5).  Also, 

when the ratio of MUCAPE (J kg-1) to 0-3 km Hr (m2s2) was greater than 25, all of the 

observed cases had Lagrangian lifetimes less than 5 h (Fig. 6).  For smaller MUCAPE to 

Hr ratios, systems could be either short-lived or long-lived.  The data seems to indicate 

that long-lived, stable events do not occur in low Hr environments.  This is consistent 

with Lilly�s (1986) conclusion that high internal helicity helps to organize storms, leading 

to more coherent, longer-lived systems. 

d. Linear Discriminant Analysis 

Relatively high Peirce skill scores determined which linear discriminant analysis 

parameter sets were selected for further analysis to make ROC curves (Table 2).  

Adjustments to the y-intercept were made in order to create 20 POD and POFD scores for 

each linear discriminant analysis scatter plot.  In the context of Fig. 7, the POD is the 

number of triangles appearing above the discrimination line (i.e., correctly classified 

long-lived systems) to the total number of triangles (i.e., total number of long-lived 
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systems).  Similarly, the POFD is the ratio of the number of circles above the line (i.e., 

short-lived events incorrectly classified as long-lived) to the total number of circles (i.e., 

the total number of short-lived events).  Notice the high ratio of circles to triangles below 

the discriminant line compared to the more nearly equal numbers of each above the line.  

This shows, once again, the ability to isolate some short-lived events, but the long-lived 

events cannot be distinguished.  The (POFD, POD) points associated with each of the 20 

y-intercepts were used to create a ROC curve for each pair of parameters (Fig. 8).  For 

each ROC curve an original area was determined by simply adding the trapezoidal areas 

under the curve.   

Each point on the ROC curve represents a possible decision point, but only points 

lying along the ROC convex hull represent potentially optimal decision points (Provost 

and Fawcett 2001).  That is, there is no user for whom decisions based on the classifier 

represented by point A in Fig. 8 would provide greater benefit than decisions based on a 

classifier represented by one of the points on the convex hull.  Therefore, the area under 

the ROC convex hull is a more accurate measure of the usefulness of the classifying 

system (Figs. 9 and 10, Table 3).  The area under the ROC curves indicated some skill in 

these classifications with ROC areas generally near 0.70, with MUCAPE and 0-1 km Hr 

as the best pair of discriminators when only cases with positive CAPE values were 

analyzed.   

5. Conclusion 

The most significant result of this study was that there were specific short-lived 

cases that could be distinguished from other cases based on their CAPE and Hr values.  

While there was no way to determine if an event would be long-lived, the cases where 
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there was high CAPE and low Hr indicated precipitation fields that decorrelated relatively 

rapidly.  Therefore, these results seem to support the idea that high helicity does favor 

long-lived systems, as indicated by Lilly (1986). 

Direct linear relationships between sounding-based parameters and decorrelation 

time were not revealed.  This could be for many reasons.  Possibly, the parameters having 

the most impact on precipitation evolution were not included in the analysis.  Also, the 

sounding-based parameters may not have been truly representative of the environment in 

which the precipitation evolved.  If this was the case, model sounding data, such as from 

the RUC model, could be used in the future to increase the likelihood that the information 

is more representative of the near storm environment (e.g. Thompson et al. 2003).   

The unique Lagrangian advection that was used in this study makes it difficult to 

compare these findings to previous work (e.g. Germann and Zawadzki 2002, Zawadzki et 

al. 1994, Turner et al. 2004).  Therefore, direct comparisons with the marginal 

relationships found in Zawadzki et al. (1994) would not be appropriate.  However, 

whereas Zawadzki et al. (1994) found some strong linear correlations between 

decorrelation times and some environmental parameters, all linear correlations in this 

study were very weak.  Also, it may be significant that the Lagrangian decorrelation 

times determined in the current study were about four times as long as the Eulerian times.  

This is different from Germann and Zawadzki�s (2002) determination of Lagrangian 

lifetimes as being twice as long as Eulerian lifetimes.   
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Appendix A (Wilks 1995): 

Data matrices [XL] and [XS] represent two-parameter arrays for long and short cases,  

respectively.  The mean of the data matrix throughout the array is denoted:   

      (5) 

 

Where 1 and 2 represent the two parameters and ng is the number of long or short cases in 

the array.  The covariance matrices ([SL] and [SS]) are calculated using the [XL] and [XS] 

data arrays.  The pooled estimate of the dispersion of these data arrays is found by: 
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The direction (d1) in the two-parameter space that can best be used to distinguish the long 

and short events is determined by: 
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Now, a new discrimination variable may be found that is the projection of the midpoint 

between the means of the long and short data set in the two parameter space.  This 

variable is a scalar, δ1, also known as Fisher�s linear discrimination function and is found 

by:  
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This value can be used to classify previously unseen events.  Once an event has its 

location in the two parameter space transposed onto d1, then it can be compared to δ1 and 

placed into a long-lived or short-lived category appropriately. For example, an event will 

be assigned to the category (short or long) above the discriminant line if:   
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        (9) 

However if the event is transposed onto d1 and:      

    01

_

1 ≤−δyd T      (10) 

Then this event would be assigned to the category below the discriminant line.  
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Table 1. Summary of linear regression between decorrelation time and sounding-based 

parameters.   

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Greater than 0.10 Linear Regression Correlation Coefficients   
Perspective Data Set # of Cases Parameter R2 
Eulerian Greater than zero SBCAPE and MUCAPE 72 max. ave. precip. 0.18
Eulerian Including zero SBCAPE and MUCAPE 82 0-1 km helicity 0.16
Eulerian Including zero SBCAPE and MUCAPE 82 0-3 km helicity 0.10
Lagrangian Greater than zero SBCAPE and MUCAPE 68 0-1 km helicity 0.12
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Table 2. Skill Scores for the LDA without any y-intercept alterations.  PSS=POD-POFD 

(Richardson 2000).   

Skill Scores for Original LDA line
Parameters for LDA PSS (POD-POFD)
With all cases
MUCAPE, 0-1 km helicity 0.19
MUCAPE, 0-3 km helicity 0.14
SBCAPE, 0-1 helicity 0.20
SBCAPE, 0-3 helicity 0.17
850-500mb LR, 0-3 km helicity 0.29
When CAPE>0
MUCAPE, 0-1 km helicity 0.27
MUCAPE, 0-3 km helicity 0.29
log SBCAPE, log 0-1 km helicity 0.33
log SBCAPE, log 0-3 km helicity 0.43
log MUCAPE, log 0-1 km helicity 0.34
log MUCAPE, log 0-3 km helicity 0.30
850-500 mb LR, 0-3 km helicity 0.31  
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Table 3. Trapezoidal areas under the ROC curve.  Elimination of cases with 0 CAPE in 

any of the three CAPE classes, increased the skill of the LDA classification.  Using 

MUCAPE and 0-1 km helicity proves to be the best discriminators. 

                                        ROC Area Scores
Parameter Combination Regular Area Convex Hull Area
log MUCAPE log 0-1 km helicity, positive CAPE cases 0.70 0.72
MUCAPE log 0-1 km helicity, postive CAPE cases 0.68 0.69
MUCAPE 0-1 km helicity, all CAPE cases 0.64 0.63
MUCAPE 0-1 km helicity, positive CAPE cases 0.71 0.74
SBCAPE 0-1 km helicity, positive CAPE cases 0.70 0.72
SBCAPE 0-1 km helicity, all CAPE cases 0.62 0.66
850-500 LR 0-3 km helicity, positive CAPE cases 0.71 0.74
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Eulerian Correlation v. Time
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Fig. 1.  Sample Eulerian correlation values decreasing with time.  Each curve represents a 

random case selected from among the 147 cases examined.   
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Lagrangian Correlation v. Time
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Fig. 2.  As in Fig. 1, but for Lagrangian correlations.   
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Lagrangian Lifetime v. 0-1 km Helicity 
(positive CAPE cases)
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Fig. 3.  Least squares fit between 0-1 km helicity and Lagrangian decorrelation time.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 27

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Categorization of systems as short-lived (lifetime < 5 h) and long-lived      
(lifetime > 5 h). 
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Long or Short v. MUCAPE / 0-1 km Helicity 
(positive CAPE cases)
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Fig. 5.  Separation of long and short Lagrangian lifetimes using ratio of MUCAPE to 0-1 
km Hr. 
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Long or Short v. MUCAPE / 0-3 km Helicity 
(positive CAPE cases) 
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Fig 6.  As in Fig. 5, except for the ratio of MUCAPE to 0-3 km Hr. 
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LDA: MUCAPE and 0-1 km Helicity 
(positive CAPE cases)
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Fig 7. LDA of long and short cases using MUCAPE and 0-1 km helicity.  When y-

intercepts are shifted, this creates a series of POD and POFD values that can be evaluated 

on a ROC curve. 
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POD v. POFD for LDA with MUCAPE and 0-1 km Helicity 
(positive CAPE cases) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

POFD

PO
D A

 
Fig. 8.  ROC curve without concavity eliminated for LDA using MUCAPE and 0-1 km 

helicity.  The points are created using a series of y-intercept alterations of the LDA 

created discriminant line (Fig 6).  
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ROC Convex Hull 
POD v. POFD for LDA with MUCAPE and 0-1 km Helicity 

(positive CAPE cases)
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Fig. 9.  ROC curve with concave values eliminated for LDA with MUCAPE and 0-1 km 

helicity. 
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ROC Convex Hull
POD v. POFD for LDA with 850-500 mb Lapse Rates 

and 0-3 km Helicity 
(positive CAPE cases)
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Fig. 10.  As in Fig. 9, for LDA using 850-500 mb lapse rate and 0-3 km Hr. 

 
 


