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ABSTRACT 

Real-time severe weather algorithms that are used to identify various storm attributes can 

be adversely affected by the presence of meteorological and non-meteorological 

contaminants such as anomalous propagation (AP), ground clutter (GC), clear-air return 

or biological scatters in the radar reflectivity data. We examine the Quality Control 

Neural Network, a new algorithm which classifies precipitation and non-precipitation 

returns from radar data and provides reflectivity tilts where the majority of contaminants 

are removed. We demonstrate that using the reflectivity tilts from the QCNN rather than 

the unedited reflectivity data improves the skill of the NSSL Mesocyclone Detection 

Algorithm (MDA). In order to determine a positive effect at classifying radar echoes, the 

MDA is run both without and with the QCNN filtering the original data.  Results using 

15 nationwide storm events show that the application of the QCNN effectively removes 

false MDA detection in clear air return while essentially not impacting the ability to 

detect mesocyclones in precipitation and storm regions. 

 

 

 

 

 

 

 

 



 

I. Introduction   

Doppler radar is an important tool in the detection, diagnosis, and prediction of 

severe storms. It is used to identify attributes associated with hail, wind, tornadoes, and 

heavy precipitation that pose a threat to life and property.  A human manually 

interepreting radar data can identify certain characteristics to estimate the severity of the 

storm. The Doppler radar estimates precipitation intensity (reflectivity) and wind (radial 

velocity) that can be fed into automated algorithms that provide additional information on 

storm structure and strength. These automated algorithms help forecasters determine a 

storm’s severity and guide their severe weather warning decision-making process.  

Many traditional severe storm algorithms are designed to assume that data are 

perfect, treating all returned echoes as precipitation.  However, not all the reflectivity 

return is precipitation.  Non-precipitating echoes include meteorological targets such as 

clear air return and radar artifacts such as ground clutter, biological scatterers (birds, 

insects), sun spikes, and anomalous propagation (AP).  These contaminate the data that 

the algorithms use.  Inherent limitations of Doppler radar (e.g., beam broadening with 

range, radar horizon, range and velocity aliasing) also add to the reduction of quality in 

radar data.   

The Mesocyclone Detection Algorithm hereafter, MDA (Stumpf et. al. 1998) 

identifies circulations in storms that have the potential to spawn tornadoes.  Since the 

MDA is designed to detect azimuthal shear in radial velocity data, it detects shears in 

portions of the radar domain that include return from precipitation and non-precipitation 

artifacts.  Noisy velocity data in the non-precipitation areas can lead to many false 



detections (McGrath et al, 2002).  Originally, the algorithm used a simple 20dBZ 

reflectivity threshold to distinguish areas of precipitation and non-precipitation.  Any 

velocity gates associated with reflectivity below the 20 dBZ threshold were not used in 

processing.  Since many mesocyclones are found near the edges of storms or in areas 

with low precipitation (e.g., near thin hook echoes), this threshold had the undesired 

effect of removing valid velocities associated with mesocyclones, thus causing missed 

detections.  To counteract this problem, the reflectivity threshold was lowered to 0dBZ.  

Although this had the desired effect of improving detections on the edges of storms, it 

had the undesired side effect of detecting more false alarms in the non-precipitating 

echoes, especially within the clear-air return adjacent to the radar.  Therefore, an optimal 

solution should intelligently classify precipitation from non-precipitation and use that 

information to threshold valid velocity gates to improve the accuracy of detecting true 

mesocyclones.  

Techniques have been and are being developed to improve the quality of the radar 

data that is fed into the algorithms. The Data Quality Algorithm (DQA; Smalley et al. 

2003)  was developed to remove non-meteorological radar data artifacts such as sun 

spikes and AP prior to algorithm computations.  The Radar Echo Classifier (REC; 

Kessinger et al. 2003) uses a fuzzy logic scheme to classify precipitating from non-

precipitating echoes, in addition to removing non-meteorological radar data artifacts.  

REC interest fields classify data from zero to one, zero being of least interest and one 

being of greatest interest, to generate a likely precipitation field.   

 The Quality Control Neural Network (hereafter, QCNN) (Lakshmanan 2003) is 

an improvement on the REC using local statistics as inputs to a neural network to classify 



pixels above a 0dBZ threshold as precipitating or non-precipitating. It uses the three radar 

moments, (reflectivity, velocity, and spectrum width), vertical gradient information, and 

other characteristics of the radar data to discriminate between precipitation and non-

precipitation echoes.  

An analysis of the QCNN's performance in reducing the amount of contaminated 

echoes and its affect on MDA performance is discussed here. The detection skill of the 

MDA using the old 0dBZ threshold technique is compared to the technique in which 

QCNN is used to threshold the velocity data.  NSSL’s Warning Decision Support System 

Integrated Information (WDSS-II; Hondl 2003) was used as the platform to run and test 

both the QCNN and MDA. 

 

II. QCNN Method  

The QCNN uses statistics of the three radar moments, (reflectivity, velocity, and 

spectrum width), vertical gradient information, and measurements such as the SPIN 

(Steiner and Smith 2002), gate-to-gate square difference (Kessinger, 2003) and SIGN 

(Kessinger, 2003) to calculate the probability of echoes that are precipitation - a 

“precipitation confidence” value from 0 to 1, with 1 having the highest confidence.  

Using a precipitation confidence threshold of 0.5, any corresponding reflectivity values 

greater than this threshold are retained, being considered as precipitation echo.  All other 

reflectivity data, where the confidence values is less than 0.5, is considered as non-

precipitation and is set to missing.    

The remaining reflectivity data is then filtered and dilated to create a buffer 

around the edges of storms.  A morphological dilation (Jain, 1989) overstates reflectivity 



values, hence the fact that smoothing filters dilate (or enlarge) the spatial extents is taken 

advantage of.  The QCNN uses a median filter that is specially adapted to polar grids 

(Stumpf et. al 2004)  A modified version of a median filter, called a “scale filter”, is used 

to smooth out the smaller scale reflectivity features at near ranges to the radar while 

maintaining the larger scale features at all ranges. The scale filter minimizes the number 

of reflectivity peaks in a storm as a function of range; more peaks are removed at smaller 

ranges from the radar.  The scale filter moves a 7x7 km “mask” across each data point in 

the polar grid and then calculates the 50th percentile (median) of all the values covered by 

the mask.  At near (far) ranges to the radar, because there is greater (less) azimuthal 

resolution, more (fewer) data points will be covered by the mask.  The filter also requires 

a minimum percentage of non-missing data values in order to compute the median of the 

good data values.  This percentage threshold is set to 10%, which essentially allows for 

the median values to be retained for points outside the edges of the precipitation (as long 

as 10% of the mask has valid data points) and accounts for the greater reliability of data 

values in the QC field. This essentially dilates the reflectivity field.  

 The resulting dilated reflectivity field is then used to threshold valid velocity 

values.  The dilated field acts as a buffer, allowing more velocity data to be used by the 

MDA with the intent of using all of the velocity data within mesocyclones, most of which 

are found near the edges of storm. It was anticipated that using the QCed data would 

remove any non-precipitation echoes, reducing the number of false alarms without 

significantly impacting the true mesocyclone detections. 

 

 



IV.  Data and Analysis 

The chosen data included 15 cases containing convective storms with 

mesocylcones, including super cells, squall lines, and tropical cyclones, from the Level II 

archives in NCDC Storm Data.  The Level II data for each case was first converted to 

NetCDF format files (required for used by WDSS-II algorithms).  Then, the data were 

subdivided into two test runs. The first run used an “unedited” reflectivity field – velocity 

data were thresholded using a simple 0 dBZ reflectivity threshold1.   The second run used 

the QCNN edited field – velocity data were thresholded with the QCed data and then 

dilated.  

The MDA was run using both methods of thresholding.   For each volume scan 

and for both unedited and QCed reflectivity data, each mesocyclone detection was 

identified and logged (Table 1) using the WDSSII display, and a subjective comparison 

to discriminate whether or not the detection was in precipitation of non-precipitation was 

made for each data set.    

  A visual examination was performed in WDSS-II using multiple techniques to 

classify the detections.  To determine false alarms in clear air, a vertical profile of 

reflectivity and velocity using all elevation scans helped to determine the homogeneity of 

the reflectivity gradient.  The more variable the gradient, the more likely the echo was 

non-precipitation.  Low reflectivities in the lowest scans adjacent to the radar were 

classified as clear air return unless precipitation extended into the higher elevations.  In 

some cases, a detection in areas of no reflectivity at the lowest scan was justified by 

                                                 
1 It should be noted that in the “unedited” run, the reflectivity data were also passed through the scale filter.  
However, the minimum percentage allowed non-missing value threshold was set to 50% which resulted in 
minimal dilation of the original reflectivity field. 



finding data in the upper elevations.  Also, animating the data helped identify areas of 

stationary reflectivity which correspond to non-precipitation echoes.   

A special database of tornadic mesocyclones (developed for NWS Tornado 

Warning Guidance, http://wdtb.noaa.gov/resources/PAPERS/twg99/indexold.htm) was 

also compared using the unedited and QCed data.  A tornadic mesocyclone was defined 

as an MDA detection that was manually associated with a tornado report during the time 

of a tornado or within a 20-minute window leading up to the start of the tornado.  All 

other detections were classified as non-tornadic. 

In addition, the number of detections that were added, deleted, or re-positioned 

within storm echo and at edges of storm echo were logged.  Although these were not the 

main focus of the study, they are included here to complete the statistics. 

 

III. Results  

 Table 1 illustrates the skill of the MDA before and after the reflectivity data was 

cleaned up by the QCNN.  Using the QCed data, 92% of the non-precipitation false 

alarms are removed.  However, there was only a 0.1% change in the total number of 

mesocyclone detections.  Additionally, there was a small improvement in the number of 

tornadic mesocyclone detections by 0.9%   

 

 

 

 

 

http://wdtb.noaa.gov/resources/PAPERS/twg99/indexold.htm


  # of Mesos 
# of Tornadic 

Mesos # False Alarms 
Shifts 
>5km 

Edges 
Removed 

Edges 
Added 

Added in 
Storms Removed in Storms 

Radar UN QC UN QC UN QC           
kabr_053196 438 445 21 23 1 0 20 15 19 3 1 
kama_052295 285 289 9 9 0 0 0 2 6 1 1 
kbmx_031896 837 837 41 41 1 0 0 3 3 1 0 
kddc_051795 734 735 24 24 2 0 6 3 7 0 0 
kdtx_062296 604 609 14 14 0 0 0 3 8 2 2 
kevx_100195 368 390 12 12 2 1 2 17 36 3 0 
kfws_041995 1624 1563 89 89 78 5 13 18 28 4 2 
kfws_050495 27 26 0 0 1 0 0 0 0 0 0 
kfws_050795 2213 2225 63 63 1 0 15 9 16 2 0 
khgx_021698 37 36 7 7 0 0 0 1 0 0 0 
kmlb_022398 1357 1356 60 61 10 0 3 11 19 8 7 
kmlb_111594 392 391 4 4 0 0 0 1 0 0 0 
kmpx_080995 108 108 0 0 0 0 0 0 0 0 0 
kpah_022799 476 496 7 7 0 2 4 18 35 4 3 
krtx_100398 17 24 1 1 0 0 0 3 10 0 0 
SUM 9517 9530 352 355 96 8 63 104 187 28 16

 

 
Table 1.  Analysis of the MDA skill as applied to QCNN data and unedited data. 

 Figure 1 (KFWS 04/19/95) shows a case in which the QCNN successfully 

removed clear air return, thus removing 5 false alarms.  Figure 2 (KDDC 05/17/95) again 

shows a successful removal of false alarms.  Figure 3 (KPAH 02/27/99) illustrates a 

failure of the QCNN because the MDA detects a false alarm in an area of clear air return 

that wasn’t fully removed.  Another failure of the QCNN (Figure 4, KEVX 10/04/95) 

shows the removal of valid precipitation.  Figure 5 (KEVX 10/04/95) illustrates an 

ambiguous case, ambiguous in the sense that determining whether or not this was a 

removal of a false alarm in clear air was a little less obvious.  

 

 

 

 



IV. Discussion 

 The differences between the QC and unedited data support the hypothesis that the 

QC method reduces false alarms while leaving true detections essentially unaffected.  

The increase in total number of mesocyclones is not a significant indicator of the overall 

performance of the QCNN,  but warrants a closer look at the specific details.  Comparing 

the QC data and unedited data, the QCNN technique scored well in removing false 

alarms, although the 92% removal was heavily influenced by two cases.  Still, in 53% of 

all cases, QCing removed false detections, showing that the QCNN has skill in 

distinguishing between precipitation and non-precipitation in a variety of storms.   

 A major limitation identified by Lakshmanan et. al (2003) is the inability of the 

QCNN to distinguish smooth clear air return from stratiform rain regions.  The authors 

could not find a discriminator between the two. Thus the QCNN could not be trained to 

handle these situations properly and we did not expect to see significant removal of false 

alarms in such cases.  For example, the QCNN failed to remove spatially smooth clear air 

return in Figure 5 and although a false alarm was removed, the clear air should have been 

deleted.  Also, light rain showers associated with the tropical storm (Figure 4) was 

removed, thus deleting valid data for the MDA to analyze.  In this case, the detections for 

both the QC and unedited data remained, while a handful was added/deleted by the 

QCNN.  These mesocyclone were identified as edges for our analysis purposes since our 

main concern was the deletion of false alarms clearly identifiable in non-precipitation 

echoes.   

 

 



V. Summary and Conclusion  

Our look at the QCNN’s performance in improving the MDA is a small step in 

further developing the network’s capabilities in improving radar data.  Again, this test 

supports our hypothesis that the QC method reduces false alarms while leaving true 

detections essentially unaffected.   A heavy emphasis must be placed on the 92% 

reduction of false alarms because it shows that the QCNN is successful in removing non-

precipitation artifacts to get a better representation of the atmosphere’s true state.  This 

reduction is all the more impressive considering every case in the training phase had 

some form of precipitation.  If some of the cases chosen had only non-precipitation 

returns, the results would have seen bias against the QCNN.  

 An important observation involves the QCNN’s handle on certain convective 

situations.  Our expectations of the QCNN having a hard time removing spatially smooth 

clear air return and difficulty handling areas of stratiform precipitation were realized.  

However, it was unexpected to find instances where the QCNN failed to remove clear air 

and AP.  Improving the detection of storm attributes along the edges is imperative, 

especially in environments such as near a thin hook echo where the evidence of such 

circulations is not as evident.  Further work to incorporate current conditions, model, and 

satellite data may improve the QCNN’s confidence in distinguishing precipitation from 

non-precipitation.   

In order for the QCNN to have success in all weather situations, it must be 

generalized by using a training set more variable in location, season, and precipitation 

type.  Also, a variety of algorithms such as tornado diagnosis, precipitation estimation 

and prediction, and storm motion, should as be tested to ensure the QCNN is useful in all 



areas of weather forecasting.  We recommend that this QC process be integrated into the 

operational MDA (at the NWS) to improve warning guidance products. 
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VIII. Figures 

 

 

 

 

Figure 1 KFWS 04/19/95  
Upper.  Unedited reflectivity with non-precipitation 
false alarm  in clear air return. 
Lower. QCNN removing clear air return, AP, and 
non-precipitation false alarms  

 

 

 

 



 

 

 

 

 

 

 

 

Figure 2 KDDC 05/17/95 
upper. Unedited reflectivity data with false alarm 
detected in clear air return. 
lower. QCNN removing clear air return and non-
precipitation false alarm. 



 

 

 

 

 

Figure 3  KPAH 02/27/99  
upper. Unedited reflectivity data with clear air 
return. 
lower. QCNN adding a non-precipitation false 
alarm. 

 

 

 

 



 

 

 

 
 
 
 

Figure 4 KEVX 10/04/95 
upper. Unedited reflectivity of a 
tropical storm. 
lower. QCNN removing areas of light 
and shallow precipitation. 

 
  
 
 



 
 
 

 
 
 
 

Figure 5 KEVX 10/04/95 
upper.  Unedited reflectivity data with imbedded 
AP in a tropical storm. 
lower. QCNN removing light rain echoes,  AP, and 
non-precipitation false alarm. 


