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1. 3D WRF-CO2 simulation
 Over US and China
2. Multi-Model investigation of Haze Pollution
3. WRF-GHG for both CO2 and CH4 simulation
4. CH4 inversion

         



Trend of CO2

Park Falls, TCCON
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Global warming controversial? Look at CO2 trend!!
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Terrestrial CO2 fluxes

IPCC (2007)

Global CO2 sources and sinks

Uncertainties of terrestrial CO2 fluxes are large



Terrestrial CO2 fluxes in different regions

Uncertainties in each region/plant function are large too

King et al., 2012



Weather-biosphere online-coupled WRF-VPRM
§ Vegetation Photosynthesis and Respiration Model (VPRM) (Xiao et al., 2004; 

Mahadevan et al., 2008; Ahmadov et al., 2007)

More details in Hu et al., 2020, JAMES

𝛼, 𝛽, 𝜆, 𝑃𝐴𝑅! need flux data calibration 

https://doi.org/10.1029/2019MS001875


Implemented parameters from Hilton et al. (2013)

Evergreen forest Deciduous
forest

Mixed forest Shrub Savanna Crop Grass

𝑃𝐴𝑅! 745.306 514.13 419.5 590.7 600 1074.9 717.1

𝜆 0.13 0.1 0.1 0.18 0.18 0.085 0.115

𝛼 0.1247 0.092 0.2 0.0634 0.2 0.13 0.0515

𝛽 0.2496 0.843 0.27248 0.2684 0.3376 0.542 -0.0986

And other minor changes to VPRM in WRF

Calibrated using eddy covariance tower data over North America



Downscaling in 2016 from CarbonTracker

WRF-VPRM IC
Point 1: both IC/BC are time dependent
Point 2: resolution of WRF-VPRM is much higher, adequate to investigate impact of weather



Short wave radiation Dudhia
Long wave radiation rapid radiative transfer model (RRTM)
Boundary layer YSU  
Microphysics Morrison
Cumulus Grell-Freitas
Land surface model NOAH
Vertical levels 47
Horizontal resolution 12 km ´ 12 km with 266´443 grid points
Time step 60 seconds

Meteo initial and lateral boundary conditions NCEP/DOE Reanalysis 2 (R2)

CO2 initial and lateral boundary conditions CarbonTracker global simulation 3o´2o outputs

Interior nudging Spectral nudging

nudging variables horizontal wind components, temperature, geopotential

nudging coefficient 3´10-5 s-1
nudging height above PBL

wave number 5 and 3 in the zonal and meridional directions respectively

nudging period throughout the downscaling simulation

configuration for WRF-VPRM downscaling 



Biogenic CO2 fluxes downscaled by WRF-VPRM vs. CarbonTracker posterior fluxes

CT2017
W

RF-VPRM



XCO2 at 
the 4 TCCON sites

captures the seasonal and some episodic variation of XCO2. 

Bias in western boundary?
Bias in anthropogenic emission?



Evaluation of
 CT2017

Evaluation of
 WRF-VPRM

Thus, bias in western boundary partially contributed to WRF-VPRM bias?



Compare with OCO-2; individual contributions

Total

Biogenic
Anthropogenic

Background



Compare with OCO-2, individual cases



Case study, Aug 5
OCO-2 underpass



Summary
1. Calibrated VPRM parameters from Hilton et al [2013] are 

implemented into WRF-VPRM 
2. WRF-VPRM reasonably captures monthly variation of XCO2 

and episodic variations due to frontal passages
3. The downscaling also successfully captures the horizontal 

CO2 gradients across fronts, as well as vertical CO2 contrast 
across the boundary layer top. 



Terrestrial CO2 fluxes in different regions

Uncertainties in each region are large too
Asia is CO2 sink!!



Mixed forest and cropland dominate in Northeast China
Crop area is still increasing!! 

SIF: Sun-induced Fluorescence, proportional to photosynthesis

Northeast China: a major CO2 sink

MODIS vegetation type



• Observational parameters:
1) Hourly mean CO2 fluxes and concentrations,
2) wind speed and direction, air temperature
3) PAR (only at Fujin)

• Observational period:  
Fujin: since 2012
Wuying: since 2014

Fujin, rice paddy field
(129.2661°E, 48.2991°N, 59 m)
  

Wuying, mixed forest site
(131.9385°E, 47.1519°N, 345 m) 

Long-term tower measurements, focusing on 2016



Seasonal variations of CO2 fluxes and concentrations 

Fujin (cropland, rice paddy)

R = 0.98

R = 0.87

MODIS vegetation type



Bias of terrestrial respiration

Fujin (cropland, rice paddy)

R = 0.98

R = 0.87

largely 
subjected to 
the EVI

Ignores leaf mass, involves EVI?



Seasonal variation of CO2 fluxes and concentrations 

Wuying (mixed forest)

R = 0.99

MODIS vegetation type



OCO-2 retrieved XCO2 (L2 Lite Version 9)

Advantage: spatiotemporal coverage
Disadvantage: interfere with cloud and haze pollution!!



Seasonal variation of XCO2 over Northeast China 

Seasonal variation range: 10 ppmv  

Annual mean contribution: 
• anthropogenic: 0.84 ppmv 
• biogenic: -0.60 ppmv

Weak winds favors the large anthropogenic 
contribution of XCO2 in summer 

32% lower than the 
annual level 



Mean diurnal variation of CO2 fluxes and concentrations in growing season 

WRF-VPRM underestimates diurnal variation range over mixed forest

Wuying (mixed forest)Fujin (cropland, rice paddy)



Conclusions and future work
• Mixed forest is observed as a stronger CO2 sink/source than rice paddy on 

average in 2016;

• Negative biogenic contribution offset about 70% of anthropogenic 
contribution of XCO2 over Northeast China in 2016;

• The uncertainty of  NEE simulation largely depends on four VPRM 
parameters, especially the maximum light use efficiency λ. 



Further improvement of WRF-VPRM
Updated CO2 flux parameterization

incorporating EVI, water stress 
scaling factor (𝑊!"#$%), and a 
quadratic dependence on Tair

More details in Hu et al., 2021, JGR

https://doi.org/10.1029/2019MS001875


Old VPRM New VPRM 

CO2 flux evaluation  



Evaluation data:
NOAA towers



CO2 concentration evaluation  



Using new VPRM
to examine 
CO2 band



Name Site Altitude (m) Substrate
Maqu 33.8975° N, 102.1619° E 3423 Kobresia tibetica and K. humilis
Yakou 38.0142° N, 100.2421° E 4148 Alpine grassland

Dashalong 38.8399° N, 98.9406° E 3739 Swampy alpine meadows
Arou 38.0473° N, 100.4643° E 3033 Alpine grassland

Nam CO 30.7667° N, 90.95° E 4730 K. pygmaea and alpine steppe

Mt. Waliguan 36.28° N, 100.9° E 3810 Arid and semi-arid grasslands, 
tundra, and deserts

Application of improved WRF-VPRM in 
China to examine CO2 flux 

Niu and Hu et al. (2023)



Application of improved WRF-VPRM in 
China to examine CO2 flux 

Niu and Hu et al. (2023)



Application of improved WRF-VPRM in 
China to examine CO2 flux 

Niu and Hu et al. (2023)
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Haze pollution in China

Heaviest haze pollution in China in 2016



MODIS WRF-
VPRM
OCO-2 

OMPS AIRS 



Conclusions
1.A severe haze pollution at the leading edge of 
a cold front in China on Dec. 9, 2016 is examined 
using multi-sensors and multi-models, including 
WRF-Chem and WRF-CO2.

2.Satellite-retrieved column-averaged CO2 data 
can be used to monitor air pollution events 
collectively with other in situ and remote-
sensing instruments.

3.Channel winds between Mountains Dabie and 
Huang transport pollutants from the North China 
Plain and Yangtze River Delta Region to Jiangxi 
Province
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WRF-GHG coupled with CAMS

Included CH4 recently doi/10.1002/essoar.10508159.1
the WetCHARTs wetland CH4 emissions
EPA NEI2017 anthropogenic CH4 emissions

https://doi.org/10.1002/essoar.10508159.1


CO2

CH4

WRF-GHG simulation vs. TCCON observation



Difference of EVI between 2018 and 2019

Flood delayed growing season

June Sept



2019 flood delayed the 
drawdown of CO2 in summer





CH4 bias against Obspack due to 
precipitation bias?

Waiting for PRISM-driven WetCharts CH4 emission



Summary
1. WRF-GHG is further developed to simulate CO2 and CH4. 
2. The 2019 May flood delayed growing season in mid-west 

and the typical spring and summer drawdown of 
atmospheric CO2 by 1-3 weeks

3. Obspack and TROPOMI data indicate higher CH4 in the mid-
west in July and August, in 2019 relative to 2018, due to the 
abnormal precipitation in 2019 in the region that induces 
more wetland CH4 emissions.
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Table 1, Summary of advantages and disadvantages of different top-down flux 
quantification techniques
flux quantification techniques Advantages disadvantages
Conventional simple methods Mass balance box methods Simply quantify the emissions using the 

total flux out of the box covering the 
emission sources

Require dense spatial sampling or 
interpolation/extrapolation

Gaussian plume inversion Simply quantify the emissions using the 
Gaussian plume equation

Assume Gaussian distributed plume, 
which is often not valid in conditions 
with variable winds and large-scale 
turbulence

More advanced methods using 
three-dimensional simulations

Particle dispersion model 
inversion (also referred to as 
scaling factor method)

Calculate the emission using the 
emission-concentration relationship 
calculated by the dispersion model, good 
for a single point source

Only scale the pre-assumed emissions 
without changing the spatial distribution, 
cannot attribute to different emission 
locations

More advanced methods 
through data assimilation

4D-Variational (4D-Var) 
approach

4D-Var is computationally efficient due 
to no requirement of ensemble forecast
4D-Var performs well over data sparse 
regions

Require abjoint model development

Ensemble Kalman Filter (EnKF) Quantify emission using flow-dependent 
error covariance between emissions and 
concentrations derived from short-term 
ensemble forecasts
Meteorological fields can be 
simultaneously optimized, which leads to 
better emission estimation 

Need re-cycle ensemble forecasts for 
time-varying emission sources



Mass balance methods



Gaussian plume inversion



More advance methods using 3D 
dispersion models and data 
assimilation
flux quantification techniques Advantages disadvantages
Conventional simple methods Mass balance box methods Simply quantify the emissions using the 

total flux out of the box covering the 
emission sources

Require dense spatial sampling or 
interpolation/extrapolation

Gaussian plume inversion Simply quantify the emissions using the 
Gaussian plume equation

Assume Gaussian distributed plume, 
which is often not valid in conditions 
with variable winds and large-scale 
turbulence

More advanced methods using 
three-dimensional simulations

Particle dispersion model 
inversion (also referred to as 
scaling factor method)

Calculate the emission using the 
emission-concentration relationship 
calculated by the dispersion model, good 
for a single point source

Only scale the pre-assumed emissions 
without changing the spatial distribution, 
cannot attribute to different emission 
locations

More advanced methods 
through data assimilation

4D-Variational (4D-Var) 
approach

4D-Var is computationally efficient due 
to no requirement of ensemble forecast
4D-Var performs well over data sparse 
regions

Require abjoint model development

Ensemble Kalman Filter (EnKF) Quantify emission using flow-dependent 
error covariance between emissions and 
concentrations derived from short-term 
ensemble forecasts
Meteorological fields can be 
simultaneously optimized, which leads to 
better emission estimation 

Need re-cycle ensemble forecasts for 
time-varying emission sources



Particle dispersion model inversion (also 
referred to as scaling factor method)



Data assimilation, 4Dvar vs. EnKF

EnKF parameter

Hu et al. 2011, GRL



CH4 flux inversion using EnKF-
WRF/GHG

49,248*9 g/day at enlink site and 12,096*9 g/day at devon and El reno site 
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