Terrestrial CO₂ fluxes, concentrations, and budgets in USA and Northeast China

Xiao-Ming Hu¹, and Xiaolan Li²

http://www.caps.ou.edu/~xhu/

2019-06-20 @ Institute of Subtropical Agriculture, Chinese Academy of Sciences

¹Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma ²Institute of Atmospheric Environment, China Meteorological Administration, Shenyang

CO₂-induced global warming?

Trend of CO₂

Global CO₂ sources and sinks

Uncertainties of terrestrial CO₂ fluxes are large

Terrestrial CO₂ fluxes in different regions

(a) Terrestrial CO₂ flux in 2015 from land regions

(Sourish Basu et al., 2018)

Uncertainties in each region/plant function are large too

WRF/Chem-VPRM for CO₂ simulation

 Vegetation Photosynthesis and Respiration Model (VPRM) (Xiao et al., 2004; Mahadevan et al., 2008; Ahmadov et al., 2007)

Implemented parameters from Hilton, Davis et al. (2013)

Calibrated using eddy covariance tower data over North America

	Evergreen forest	Deciduous forest	Mixed forest	Shrub	Savanna	Сгор	Grass
PAR ₀	745.306	514.13	419.5	590.7	600	1074.9	717.1
λ	0.13	0.1	0.1	0.18	0.18	0.085	0.115
α	0.1247	0.092	0.2	0.0634	0.2	0.13	0.0515
β	0.2496	0.843	0.27248	0.2684	0.3376	0.542	-0.0986

And other minor changes to VPRM in WRF

Downscaling in year 2016 from CT-NRT.v2017

Point 1: both IC/BC are time dependent

Point 2: resolution of WRF-VPRM is much higher, adequate to investigate impact of weather

Carbon Tracker NRT

Carbon Tracker NRT

Min= 384.7 Max= 489.7 80°W

co2 layer 0

configuration for WRF-VPRM downscaling

Short wave radiation	Dudhia
Long wave radiation	rapid radiative transfer model (RRTM)
Boundary layer	YSU
Microphysics	Morrison
Cumulus	Grell-Freitas
Land surface model	NOAH
Vertical levels	47
Horizontal resolution	12 km $ imes$ 12 km with 266 $ imes$ 443 grid points
Time step	60 seconds
Meteo initial and lateral boundary conditions	NCEP/DOE Reanalysis 2 (R2)
CO ₂ initial and lateral boundary conditions	CarbonTracker global simulation 3°×2° outputs
Interior nudging	Spectral nudging
nudging variables	horizontal wind components, temperature, geopotential
nudging coefficient	3×10 ⁻⁵ s ⁻¹
nudging height	above PBL
wave number	5 and 3 in the zonal and meridional directions respectively
nudging period	throughout the downscaling simulation

Downscaling captures the monthly variation of precipitation

Biogenic CO₂ fluxes downscaled by WRF-VPRM vs. CarbonTracker posterior fluxes

XCO₂ at the 4 TCCON sites

captures the seasonal and some episodic variation of XCO_2 .

Thus, bias in western boundary partially contributed to WRF-VPRM bias?

Individual contribution to XCO2

Compare with OCO-2, individual cases

Statistic evaluation of XCO₂ using OCO-2 data

Best performance in Summer, followed by Fall

Case study July 25

Capture the contrast across boundary layer top

Case study, Aug 5 OCO-2 underpass

Aug 21,2016

Capture the contrast across boundary layer top, and across cold front

Summary

- 1. Calibrated VPRM parameters from Hilton et al [2013] are implemented into WRF-VPRM
- 2. WRF-VPRM reasonably captures monthly variation of XCO₂ and episodic variations due to frontal passages
- 3. The downscaling also successfully captures the horizontal CO₂ gradients across fronts, as well as vertical CO₂ contrast across the boundary layer top.

Terrestrial CO₂ fluxes in different regions

(Sourish Basu et al., 2018)

Uncertainties in each region are large too Asia is CO₂ sink!!

Northeast China: a major CO₂ sink

Mixed forest and cropland dominate in Northeast China Crop area is still increasing!!

SIF: Sun-induced Fluorescence, proportional to photosynthesis

Long-term tower measurements, focusing on 2016

2016 downscaling using WRF-VPRM: a weather-biosphere-online-coupled model

- **Resolution:** 20 km in d01; 4 km in d02
- Meteorology initial/boundary conditions: NECP/DOE R2
- **CO₂ initial/boundary conditions:** 3°×2° CarbanTracker 2017
- Anthropogenic emissions of CO₂: ODIAC

	Crops	Mixed	Evergreen	Deciduous	Shrub	Savanna	Grass
		forest	forest	forest			
α	0.1300	0.2000	0.1247	0.0920	0.0634	0.2000	0.0515
β	0.5420	0.27248	0.2496	0.8430	0.2684	0.3376	-0.0986
λ	0.085	0.100	0.130	0.100	0.180	0.180	0.115
PAR ₀	1074.9	419.50	745.306	514.13	590.7	600.0	717.1

Following Hu et al. (2019) based on Hilton et al. (2013)

OCO-2 retrieved XCO₂ (L2 Lite Version 9)

Advantage: spatiotemporal coverage Disadvantage: interfere with cloud and haze pollution!!

Seasonal variations of CO₂ fluxes and concentrations

MODIS vegetation type

Bias of terrestrial respiration

Seasonal variation of CO₂ fluxes and concentrations

MODIS vegetation type

Episodic variation on October 15, 2016

Regional transport on October 15

Anthropogenic emissions & biogenic contribution

Anthropogenic emissions only

Anthropogenic contribution: $59.4 \pm 5.9\%$ Biogenic contribution: $40.6 \pm 5.9\%$

Vertical cross-section on October 15

Regional transport as well as subsidence?

OCO-2 retrieved XCO₂ (L2 Lite Version 9)

Advantage: spatiotemporal coverage Disadvantage: interfere with cloud and haze pollution!!

Seasonal variation of XCO₂ over Northeast China

Seasonal variation range: 10 ppmv

Annual mean contribution:

- anthropogenic: 0.84 ppmv
- biogenic: -0.60 ppmv

Weak winds favors the large anthropogenic contribution of XCO₂ in summer

Mean diurnal variation of CO₂ fluxes and concentrations in growing season

WRF-VPRM underestimates diurnal variation range over mixed forest

Ensemble offline VPRM simulations over mixed forest, predictability of CO₂ fluxes

Table 3 Range of VPRM parameters in five groups of ensemble simulations, with *

representing relative variation to the default values

Ensemble Simulation	α	β	λ	PAR ₀
ES1	[0.12, 0.30]	[0.50, 1.20]	[0.09, 0.14]	[350, 600]
	$\textbf{-40}\sim 50\%^*$	$\textbf{-50} \sim \textbf{20\%}^*$	$-10 \sim 40\%^{*}$	$-16.57 \sim 43.03\%^*$
ES2	[0.12, 0.30]	1	0.1	419.5
ES3	0.2	[0.50, 1.20]	0.1	419.5
ES4	0.2	1	[0.09, 0.14]	419.5
ES5	0.2	1	0.1	[350, 600]

Conclusions and future work

- Mixed forest is observed as a stronger CO₂ sink/source than rice paddy on average in 2016;
- Negative biogenic contribution offset about 70% of anthropogenic contribution of XCO₂ over Northeast China in 2016;
- The uncertainty of NEE simulation largely depends on four VPRM parameters, especially the maximum light use efficiency λ.

Future: Update VPRM in WRF, including update the GEE equation and parameters. $GEE = (\lambda \times T_{scale} \times W_{scale} \times V_{scale}) \times FAPAR_{PAV} \times 1/(1 + PAR/PAR_0) \times PAR$ $1.25^*(EVI-0.1)$ Also separate crop into C3/C4

CO₂ models

- Global models:
 - -Chemistry transport model TM3 (Heiman, 1996), TM5 (Krol et al., 2005)
 - -Laboratoire de Met'eorologie Dynamique, LMDZ (Hauglustaine et al., 2004)
 - -ECHAM-4 (Max Planck Institute for Meteorology)
 - -CarbonTracker (only simulate CO₂ fluxes, not CO₂ concentrations)
- Regional models:
 - -NCAR episodic regional chemical transport mode, HANK (Hess et al., 2000)
 - -Danish Eulerian Hemispheric Model, DEHM (Christensen, 1997)
 - -REgional MOdel, REMO(Majewski, 1991)
 - -DEHM-LSM (land surface model), (Geel et al., 2004)
 - -RAMS-SiB2(Scott Denning et al., 2003)