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Motivations: global warming, extreme weather 



Trend of CO2

Park Falls, TCCON
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Global warming controversial? Look at CO2 trend!!
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• CH4/CO2 sources are unknown

• Instruments are either too expensive or spatiotemporal coverage is not 

enough

• Uncertainties of forward simulation are large, which prevents accurate 

inversion

Motivations: greenhouse gas 
effect



1. 3D WRF-CO2 simulation

 Over US and China

2. Multi-Model investigation of Haze Pollution
3. WRF-GHG for both CO2 and CH4 simulation
4. CH4 inversion

         



Terrestrial CO2 fluxes

IPCC (2007)

Global CO2 sources and sinks

Uncertainties of terrestrial CO2 fluxes are large



Terrestrial CO2 fluxes in different regions

Uncertainties in each region/plant function are large too

King et al., 2012



Weather-biosphere online-coupled WRF-VPRM
▪ Vegetation Photosynthesis and Respiration Model (VPRM) (Xiao et al., 2004; 

Mahadevan et al., 2008; Ahmadov et al., 2007)

More details in Hu et al., 2020, JAMES

𝛼, 𝛽, 𝜆, 𝑃𝐴𝑅0 need flux data calibration 

https://doi.org/10.1029/2019MS001875


Implemented parameters from Hilton et al. (2013)

Evergreen forest
Deciduous

forest
Mixed forest Shrub Savanna Crop Grass

𝑃𝐴𝑅0 745.306 514.13 419.5 590.7 600 1074.9 717.1

𝜆 0.13 0.1 0.1 0.18 0.18 0.085 0.115

𝛼 0.1247 0.092 0.2 0.0634 0.2 0.13 0.0515

𝛽 0.2496 0.843 0.27248 0.2684 0.3376 0.542 -0.0986

And other minor changes to VPRM in WRF

Calibrated using eddy covariance tower data over North America



Downscaling in 2016 from CarbonTracker

WRF-VPRM IC
Point 1: both IC/BC are time dependent
Point 2: resolution of WRF-VPRM is much higher, adequate to investigate impact of weather



Short wave radiation Dudhia

Long wave radiation rapid radiative transfer model (RRTM)

Boundary layer YSU  

Microphysics Morrison

Cumulus Grell-Freitas

Land surface model NOAH

Vertical levels 47

Horizontal resolution 12 km  12 km with 266443 grid points

Time step 60 seconds

Meteo initial and lateral boundary conditions NCEP/DOE Reanalysis 2 (R2)

CO2 initial and lateral boundary conditions CarbonTracker global simulation 3o2o outputs

Interior nudging Spectral nudging

nudging variables horizontal wind components, temperature, geopotential

nudging coefficient 310-5 s-1

nudging height above PBL

wave number 5 and 3 in the zonal and meridional directions respectively

nudging period throughout the downscaling simulation

configuration for WRF-VPRM downscaling 



Biogenic CO2 fluxes downscaled by WRF-VPRM vs. CarbonTracker posterior fluxes

C
T

2
0

1
7

W
R

F
-V

P
R

M



XCO2 at 
the 4 TCCON sites

captures the seasonal and some episodic variation of XCO2. 

Bias in western boundary?
Bias in anthropogenic emission?



Evaluation of
 CT2017

Evaluation of
 WRF-VPRM

Thus, bias in western boundary partially contributed to WRF-VPRM bias?



Compare with OCO-2; individual contributions

Total

Biogenic
Anthropogenic

Background



Compare with OCO-2, individual cases



Case study, Aug 5
OCO-2 underpass



Summary

1. Calibrated VPRM parameters from Hilton et al [2013] are 
implemented into WRF-VPRM 

2. WRF-VPRM reasonably captures monthly variation of XCO2 
and episodic variations due to frontal passages

3. The downscaling also successfully captures the horizontal 
CO2 gradients across fronts, as well as vertical CO2 contrast 
across the boundary layer top. 



Terrestrial CO2 fluxes in different regions

Uncertainties in each region are large too

Asia is CO2 sink!!



Mixed forest and cropland dominate in Northeast China

Crop area is still increasing!! 

SIF: Sun-induced Fluorescence, proportional to photosynthesis

Northeast China: a major CO2 sink

MODIS vegetation type



• Observational parameters:

1) Hourly mean CO2 fluxes and concentrations,

2) wind speed and direction, air temperature

3) PAR (only at Fujin)

• Observational period:  

Fujin: since 2012

Wuying: since 2014

Fujin, rice paddy field

(129.2661°E, 48.2991°N, 59 m)

  

Wuying, mixed forest site

(131.9385°E, 47.1519°N, 345 m) 

Long-term tower measurements, focusing on 2016



Seasonal variations of CO2 fluxes and concentrations 

Fujin (cropland, rice paddy)

R = 0.98

R = 0.87

MODIS vegetation type



Bias of terrestrial respiration

Fujin (cropland, rice paddy)

R = 0.98

R = 0.87

largely 

subjected to 

the EVI

Ignores leaf mass, involves EVI?



Seasonal variation of CO2 fluxes and concentrations 

Wuying (mixed forest)

R = 0.99

MODIS vegetation type



OCO-2 retrieved XCO2 (L2 Lite Version 9)

Advantage: spatiotemporal coverage

Disadvantage: interfere with cloud and haze pollution!!



Seasonal variation of XCO2 over Northeast China 

Seasonal variation range: 10 ppmv  

Annual mean contribution: 

• anthropogenic: 0.84 ppmv 

• biogenic: -0.60 ppmv

Weak winds favors the large anthropogenic 

contribution of XCO2 in summer 

32% lower than the 

annual level 



Mean diurnal variation of CO2 fluxes and concentrations in growing season 

WRF-VPRM underestimates diurnal variation range over mixed forest

Wuying (mixed forest)Fujin (cropland, rice paddy)



Conclusions and future work
• Mixed forest is observed as a stronger CO2 sink/source than rice paddy on 

average in 2016;

• Negative biogenic contribution offset about 70% of anthropogenic 

contribution of XCO2 over Northeast China in 2016;

• The uncertainty of  NEE simulation largely depends on four VPRM 

parameters, especially the maximum light use efficiency λ. 



Further improvement of WRF-VPRM
Updated CO2 flux parameterization

incorporating EVI, water stress 
scaling factor (𝑊𝑠𝑐𝑎𝑙𝑒), and a 
quadratic dependence on Tair

More details in Hu et al., 2021, JGR

https://doi.org/10.1029/2019MS001875


Old VPRM New VPRM 

CO2 flux evaluation  



Evaluation data:
NOAA towers



CO2 concentration evaluation  



Using new VPRM
to examine 
CO2 band



Name Site Altitude (m) Substrate

Maqu 33.8975° N, 102.1619° E 3423 Kobresia tibetica and K. humilis

Yakou 38.0142° N, 100.2421° E 4148 Alpine grassland

Dashalong 38.8399° N, 98.9406° E 3739 Swampy alpine meadows

Arou 38.0473° N, 100.4643° E 3033 Alpine grassland

Nam CO 30.7667° N, 90.95° E 4730 K. pygmaea and alpine steppe

Mt. Waliguan 36.28° N, 100.9° E 3810
Arid and semi-arid grasslands, 

tundra, and deserts

Application of improved WRF-VPRM in 
China to examine CO2 flux 

Niu and Hu et al. (2023)



Application of improved WRF-VPRM in 
China to examine CO2 flux 

Niu and Hu et al. (2023)



Application of improved WRF-VPRM in 
China to examine CO2 flux 

Niu and Hu et al. (2023)



1. 3D WRF-CO2 simulation

 Over US and China

2. Multi-Model investigation of Haze Pollution
3. WRF-GHG for both CO2 and CH4 simulation
4. CH4 inversion

         



Haze pollution in China

Heaviest haze pollution in China in 2016



MODIS WRF-

VPRM

OCO-2 

OMPS AIRS 



Conclusions
1.A severe haze pollution at the leading edge of 

a cold front in China on Dec. 9, 2016 is examined 

using multi-sensors and multi-models, including 

WRF-Chem and WRF-CO2.

2.Satellite-retrieved column-averaged CO2 data 

can be used to monitor air pollution events 

collectively with other in situ and remote-

sensing instruments.

3.Channel winds between Mountains Dabie and 

Huang transport pollutants from the North China 

Plain and Yangtze River Delta Region to Jiangxi 

Province



1. 3D WRF-CO2 simulation

 Over US and China

2. Multi-Model investigation of Haze Pollution
3. WRF-GHG for both CO2 and CH4 simulation
4. CH4 inversion

         



WRF-GHG coupled with CAMS

Included CH4 recently doi/10.1002/essoar.10508159.1

the WetCHARTs wetland CH4 emissions

EPA NEI2017 anthropogenic CH4 emissions

https://doi.org/10.1002/essoar.10508159.1


CO2

CH4

WRF-GHG simulation vs. TCCON observation



Difference of EVI between 2018 and 2019

Flood delayed growing season

June Sept



2019 flood delayed the 
drawdown of CO2 in summer





CH4 bias against Obspack due to 
precipitation bias?

Waiting for PRISM-driven WetCharts CH4 emission



Summary

1. WRF-GHG is further developed to simulate CO2 and CH4. 

2. The 2019 May flood delayed growing season in mid-west 
and the typical spring and summer drawdown of 
atmospheric CO2 by 1-3 weeks

3. Obspack and TROPOMI data indicate higher CH4 in the mid-
west in July and August, in 2019 relative to 2018, due to the 
abnormal precipitation in 2019 in the region that induces 
more wetland CH4 emissions.



1. 3D WRF-CO2 simulation

 Over US and China

2. Multi-Model investigation of Haze Pollution
3. WRF-GHG for both CO2 and CH4 simulation
4. CH4 inversion

         



Table 1, Summary of advantages and disadvantages of different top-down flux 

quantification techniques



Table 1, Summary of advantages and disadvantages of different top-down flux 

quantification techniques

flux quantification techniques Advantages disadvantages

Conventional simple methods Mass balance box methods Simply quantify the emissions using the 

total flux out of the box covering the 

emission sources

Require dense spatial sampling or 

interpolation/extrapolation

Gaussian plume inversion Simply quantify the emissions using the 

Gaussian plume equation
Assume Gaussian distributed plume, 

which is often not valid in conditions 
with variable winds and large-scale 

turbulence

More advanced methods using 

three-dimensional simulations

Particle dispersion model 

inversion (also referred to as 

scaling factor method)

Calculate the emission using the 

emission-concentration relationship 

calculated by the dispersion model, good 

for a single point source

Only scale the pre-assumed emissions 

without changing the spatial distribution, 

cannot attribute to different emission 

locations

More advanced methods 

through data assimilation

4D-Variational (4D-Var) 

approach

4D-Var is computationally efficient due 

to no requirement of ensemble forecast

4D-Var performs well over data sparse 

regions

Require abjoint model development

Ensemble Kalman Filter (EnKF) Quantify emission using flow-dependent 

error covariance between emissions and 

concentrations derived from short-term 

ensemble forecasts

Meteorological fields can be 

simultaneously optimized, which leads to 

better emission estimation 

Need re-cycle ensemble forecasts for 

time-varying emission sources



Mass balance methods



Gaussian plume inversion



More advance methods using 3D 
dispersion models and data 
assimilation
flux quantification techniques Advantages disadvantages

Conventional simple methods Mass balance box methods Simply quantify the emissions using the 

total flux out of the box covering the 

emission sources

Require dense spatial sampling or 

interpolation/extrapolation

Gaussian plume inversion Simply quantify the emissions using the 

Gaussian plume equation
Assume Gaussian distributed plume, 

which is often not valid in conditions 
with variable winds and large-scale 

turbulence

More advanced methods using 

three-dimensional simulations

Particle dispersion model 

inversion (also referred to as 

scaling factor method)

Calculate the emission using the 

emission-concentration relationship 

calculated by the dispersion model, good 

for a single point source

Only scale the pre-assumed emissions 

without changing the spatial distribution, 

cannot attribute to different emission 

locations

More advanced methods 

through data assimilation

4D-Variational (4D-Var) 

approach

4D-Var is computationally efficient due 

to no requirement of ensemble forecast

4D-Var performs well over data sparse 

regions

Require abjoint model development

Ensemble Kalman Filter (EnKF) Quantify emission using flow-dependent 

error covariance between emissions and 

concentrations derived from short-term 

ensemble forecasts

Meteorological fields can be 

simultaneously optimized, which leads to 

better emission estimation 

Need re-cycle ensemble forecasts for 

time-varying emission sources



Particle dispersion model inversion (also 
referred to as scaling factor method)



Data assimilation, 4Dvar vs. EnKF

EnKF parameter

Hu et al. 2011, GRL



CH4 flux inversion using EnKF-
WRF/GHG

49,248*9 g/day at enlink site and 12,096*9 g/day at devon and El reno site 
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