Greenhouse gases simulations and Inversion

Xiao-Ming Hu (xhu@ou.edu) https://caps.ou.edu/xhu/

Center for Analysis and Prediction of Storms University of Oklahoma

Sep 30, 2024, MET 3513 Atmospheric chemistry July 2025, ShengYang camp

Motivations: global warming, extreme weather

GLOBAL CHANGE &

Disclose IV

0041

Motivations: greenhouse gas effect

Methane is a major contributor to global warming

Contribution to warming in degrees Celsius

Figures are for contributions to 2010-2019 warming relative to 1850-1900 *Volatile organic compounds and carbon monoxide

BBC

CH₄/CO₂ sources are unknown

Source: IPCC Sixth Assessment Report 2021

- Instruments are either too expensive or spatiotemporal coverage is not enough
- Uncertainties of forward simulation are large, which prevents accurate inversion

1. **3D WRF-CO₂ simulation**

- **Over US and China**
- 2. Multi-Model investigation of Haze Pollution
- **3. WRF-GHG for both CO₂ and CH₄ simulation**
- 4. CH4 inversion

Global CO₂ sources and sinks

Uncertainties of terrestrial CO₂ fluxes are large

Terrestrial CO₂ fluxes in different regions

Uncertainties in each region/plant function are large too

Weather-biosphere online-coupled WRF-VPRM

EVI 2016-07-25 18:00:00

 Vegetation Photosynthesis and Respiration Model (VPRM) (Xiao et al., 2004; Mahadevan et al., 2008; Ahmadov et al., 2007) en.Deciduous.Mixed forest.Shrubland.Savanna.Cropland.Gra

More details in Hu et al., 2020, JAMES

Implemented parameters from Hilton et al. (2013)

Calibrated using eddy covariance tower data over North America

	Evergreen forest	Deciduous forest	Mixed forest	Shrub	Savanna	Сгор	Grass
PAR ₀	745.306	514.13	419.5	590.7	600	1074.9	717.1
λ	0.13	0.1	0.1	0.18	0.18	0.085	0.115
α	0.1247	0.092	0.2	0.0634	0.2	0.13	0.0515
β	0.2496	0.843	0.27248	0.2684	0.3376	0.542	-0.0986

And other minor changes to VPRM in WRF

Downscaling in 2016 from CarbonTracker

Point 1: both IC/BC are time dependent Point 2: resolution of WRF-VPRM is much higher, adequate to investigate impact of weather

400 403 406 409 412 415 418 421 424 ppmv

2015/12/31 22:30 UTC 16 CST

configuration for WRF-VPRM downscaling

Short wave radiation	Dudhia
Long wave radiation	rapid radiative transfer model (RRTM)
Boundary layer	YSU
Microphysics	Morrison
Cumulus	Grell-Freitas
Land surface model	NOAH
Vertical levels	47
Horizontal resolution	12 km \times 12 km with 266 \times 443 grid points
Time step	60 seconds
Meteo initial and lateral boundary conditions	NCEP/DOE Reanalysis 2 (R2)
CO ₂ initial and lateral boundary conditions	CarbonTracker global simulation 3°×2° outputs
Interior nudging	Spectral nudging
nudging variables	horizontal wind components, temperature, geopotential
nudging coefficient	3×10 ⁻⁵ s ⁻¹
nudging height	above PBL
wave number	5 and 3 in the zonal and meridional directions respectively
nudging period	throughout the downscaling simulation

Biogenic CO₂ fluxes downscaled by WRF-VPRM vs. CarbonTracker posterior fluxes

XCO₂ at the 4 TCCON sites

Bias in western boundary? Bias in anthropogenic emission?

captures the seasonal and some episodic variation of XCO₂.

Thus, bias in western boundary partially contributed to WRF-VPRM bias?

Compare with OCO-2; individual contributions

Compare with OCO-2, individual cases

Case study, Aug 5 OCO-2 underpass

Summary

- 1. Calibrated VPRM parameters from Hilton et al [2013] are implemented into WRF-VPRM
- 2. WRF-VPRM reasonably captures monthly variation of XCO₂ and episodic variations due to frontal passages
- 3. The downscaling also successfully captures the horizontal CO_2 gradients across fronts, as well as vertical CO_2 contrast across the boundary layer top.

Terrestrial CO₂ fluxes in different regions

⁽Sourish Basu et al., 2018)

Uncertainties in each region are large too Asia is CO₂ sink!!

Northeast China: a major CO₂ sink

Mixed forest and cropland dominate in Northeast China Crop area is still increasing!!

SIF: Sun-induced Fluorescence, proportional to photosynthesis

Long-term tower measurements, focusing on 2016

Seasonal variations of CO₂ fluxes and concentrations

MODIS vegetation type

Bias of terrestrial respiration

Seasonal variation of CO₂ fluxes and concentrations

MODIS vegetation type

OCO-2 retrieved XCO₂ (L2 Lite Version 9)

Advantage: spatiotemporal coverage Disadvantage: interfere with cloud and haze pollution!!

Seasonal variation of XCO₂ over Northeast China

Seasonal variation range: 10 ppmv

Annual mean contribution:

- anthropogenic: 0.84 ppmv
- biogenic: -0.60 ppmv

Weak winds favors the large anthropogenic contribution of XCO₂ in summer

Mean diurnal variation of CO₂ fluxes and concentrations in growing season

WRF-VPRM underestimates diurnal variation range over mixed forest

Conclusions and future work

- Mixed forest is observed as a stronger CO₂ sink/source than rice paddy on average in 2016;
- Negative biogenic contribution offset about 70% of anthropogenic contribution of XCO₂ over Northeast China in 2016;
- The uncertainty of NEE simulation largely depends on four VPRM parameters, especially the maximum light use efficiency λ.

Further improvement of WRF-VPRM Updated CO₂ flux parameterization

 $ER = \alpha \times T + \beta$

(Gourdji et al., 2020):

 $ER = \beta + \alpha_1 \cdot T + \alpha_2 \cdot T^2 + \gamma \cdot EVI + k_1 \cdot W_{scale} + k_2 \cdot W_{scale} \cdot T + k_3 \cdot W_{scale} \cdot T^2$

incorporating EVI, water stress scaling factor (W_{scale}), and a quadratic dependence on Tair

More details in Hu et al., 2021, JGR

CO₂ flux evaluation Old VPRM

New VPRM

EVI @2016-08-04

Evaluation data: NOAA towers

CO₂ concentration evaluation

Using new VPRM to examine CO_2 band

Application of improved WRF-VPRM in China to examine CO_2 flux

	Name	Site	Altitude (m)	Substrate
	Maqu	33.8975° N, 102.1619° E	3423	Kobresia tibetica and K. humilis
	Yakou	38.0142° N, 100.2421° E	4148	Alpine grassland
	Dashalong	38.8399° N, 98.9406° E	3739	Swampy alpine meadows
	Arou	38.0473° N, 100.4643° E	3033	Alpine grassland
	Nam CO	30.7667° N, 90.95° E	4730	K. pygmaea and alpine steppe
EVI	Mt. Waliguan	36.28° N, 100.9° E	3810	Arid and semi-arid grasslands, tundra, and deserts

Application of improved WRF-VPRM in China to examine CO₂ flux

Niu and Hu et al. (2023)

Application of improved WRF-VPRM in China to examine CO₂ flux

Niu and Hu et al. (2023)

1.3D WRF-CO2 simulation

- **Over US and China**
- 2. Multi-Model investigation of Haze Pollution
- **3. WRF-GHG for both CO₂ and CH₄ simulation**
- 4. CH4 inversion

Haze pollution in China

2016-12-08

Heaviest haze pollution in China in 2016

Conclusions

1. A severe haze pollution at the leading edge of a cold front in China on Dec. 9, 2016 is examined using multi-sensors and multi-models, including WRF-Chem and WRF-CO₂.

2. Satellite-retrieved column-averaged CO_2 data can be used to monitor air pollution events collectively with other in situ and remotesensing instruments.

3. Channel winds between Mountains Dabie and Huang transport pollutants from the North China Plain and Yangtze River Delta Region to Jiangxi Province

1. 3D WRF-CO2 simulation

- **Over US and China**
- 2. Multi-Model investigation of Haze Pollution
- **3. WRF-GHG for both CO₂ and CH₄ simulation**
- 4. CH4 inversion

WRF-GHG coupled with CAMS

Included CH₄ recently doi/10.1002/essoar.10508159.1 the WetCHARTs wetland CH₄ emissions EPA NEI2017 anthropogenic CH₄ emissions

WRF-GHG simulation vs. TCCON observation

Difference of EVI between 2018 and 2019

June

EVI_diff 2019-2018 06-26_18:00:00

Sept EVI_diff 2019-2018 09-21_18:00:00

Flood delayed growing season

2019 flood delayed the drawdown of CO_2 in summer

CH₄ bias against Obspack due to precipitation bias?

Waiting for PRISM-driven WetCharts CH₄ emission

Summary

- 1. WRF-GHG is further developed to simulate CO_2 and CH_4 .
- 2. The 2019 May flood delayed growing season in mid-west and the typical spring and summer drawdown of atmospheric CO_2 by 1-3 weeks
- 3. Obspack and TROPOMI data indicate higher CH_4 in the midwest in July and August, in 2019 relative to 2018, due to the abnormal precipitation in 2019 in the region that induces more wetland CH_4 emissions.

1. 3D WRF-CO2 simulation

- **Over US and China**
- 2. Multi-Model investigation of Haze Pollution
- **3. WRF-GHG for both CO2 and CH4 simulation**
- 4. CH4 inversion

Table 1, Summary of advantages and disadvantages of different top-down flux quantification techniques

Category	Method	Description	Strengths	Limitations	References
Mass Conservation Based	Local Mass Balance	Estimates CH ₄ emissions by integrating the concentration across a defined plane downwind of the source.	Simple to implement; useful for local or regional flux estimation	Highly dependent on accurate wind speed and direction; Often need aircraft campaign to collect vertical CH ₄ profile	<u>Cambaliza et al. (2014); Johnson</u> and Johnson (1995); <u>Spokas et al.</u> (2006)
	Gauss's Theorem Method	The outward flux summed along a contour surrounding the point source	Closed circle, good for single or contained sources	Highly dependent on accurate wind speed and direction; also need CH4 concentration observations	Conley, Faloona et al. (2017), Ryoo, Iraci et al. (2019)
	Integrated Mass Enhancement	Based on satellite observations: The total mass enhancement in the plume is related to the magnitude of emission with a parameterization dependent on wind speed.	Useful for large-scale emissions detection and satellite data utilization	Relies on assumptions about atmospheric mixing and wind patterns; cannot resolve small-scale or intermittent emissions	Bhardwaj, Kumar et al. (2022)
	Angular Width	Based on satellite observations: Infer source rates without independent wind information by using the plume angular width as a measure of wind speed.	Provides an alternative to wind-measurement- dependent models; useful when meteorological data is limited	Assumes uniform plume dispersion; sensitive to plume geometry and wind patterns	Jongatamtungtuang, Frankenberg et al. (2019)
	Tracer Correlation Method	Releasing known quantities of tracer gas(es), e.g., N ₂ O close to a suspected source, the unknown methane flow was deduced based on the known tracer flow and the measured concentration enhancements	Doesn't require detailed atmospheric dispersion modeling; can be deployed in varied environments	Requires separate tracer gas release, which can be logistically difficult	Galle, Samuelsson et al. (2001), Sisterson, Peppler et al. (2016)
Gaussian Dispersion Based	Gaussian Plume Model	Assumes the CH ₄ concentration emitted from a point source follows a Gaussian distribution in space.	Well-suited for point-source emissions; simple and easy to use	Highly dependent on accurate wind speed and direction; also need CH ₄ concentration observations	<u>Grauer et al. (2018); Matacchiera</u> et al. (2019); Varon et al. (2018)
Lagrangian Particle Dispersion Based	Lagrangian Stochastic Particle Dispersion Model	Simulates the transport and dispersion of CH_4 using particle trajectories in the atmosphere.	More accurate than Gaussian models in complex environments; accounts for surface roughness and non-uniform meteorological conditions	Highly dependent on accurate meteorological inputs	<u>Gao et al. (2008); Gao et al.</u> (2009); Laubach and Kelliher (2005)
Data Data assimilation methods Based Data assimilation Method (4DV Markov Cha Monte Carl Other Bayesi inference Bas Methods	Ensemble Kalman Filter (ĘŋĶĘ)	Assimilates CH ₄ observational data to iteratively update model states, using an ensemble forecast.	Dynamically accounts for uncertainties in model states and measurements; handles time- dependent variations	Computationally demanding; requires a high-quality ensemble of meteorological inputs	<u>Bisht et al. (2023); Platonova and Klimova (2021)</u>
	Variational Method (4DVar)	the model's posterior over time is adjusted to minimize the discrepancies between the model output and observations of methane emissions over a time window.	Allows for dynamic error evolution, providing detailed spatiotemporal corrections of methane fluxes.	Computationally expensive and requires an adjoint model, which can be difficult to develop.	Wilson, Chipperfield et al. (2014), Bannister and Wilson (2024)
	Markov Chain Monte Carlo	It samples from the posterior distribution of model parameters or state variables, providing a probabilistic estimate by generating a large number of samples.	Provides a thorough exploration of parameter space; useful for uncertainty quantification in methane emissions estimation	Can be slow to converge; computationally demanding	Western, Ramsden et al. (2021)
	Other Bayesian inference Based Methods	Bayesian inference techniques estimate CH ₄ emissions by iteratively updating a prior emission estimate using observational data and optimizing the posterior distribution of the emission.	Uses probabilistic framework; effectively incorporates uncertainties in the model and data, handles non-linear dynamics well	Computationally expensive; sensitive to prior assumptions, and convergence can be slow depending on the complexity of the model	Thompson, Sasakawa et al. (2017), Cusworth, Bloom et al. (2021)
Marking	Convolutional Neural Network	Machine learning-based approach that learns from observed methane concentrations to estimate emission sources by identifying spatial patterns.	Highly adaptable to large datasets; can discover complex, non-linear relationships between emissions and observed concentrations	Requires large amounts of data to train; susceptible to overfitting, and can be difficult to interpret	Jahan, Mehana et al. (2024)
Machine Learning Based	Random Forests	Machine learning approach that aggregates decision trees to predict methane emissions based on various input variables, such as meteorological conditions and observed concentrations.	Handles complex interactions between variables well; robust against overfitting with appropriate tuning	Requires careful feature selection; may not generalize well beyond training data	Irvin, Zhou et al. (2021), Rāsānen, Manninen et al. (2021)

Table 1, Summary of advantages and disadvantages of different top-down flux quantification techniques

flux guantification techniques		Advantages	disadvantages
Conventional simple methods	Mass balance box methods	Simply quantify the emissions using the total flux out of the box covering the emission sources	Require dense spatial sampling or interpolation/extrapolation
	Gaussian plume inversion	Simply quantify the emissions using the Gaussian plume equation	Assume Gaussian distributed plume, which is often not valid in conditions with variable winds and large-scale turbulence
More advanced methods using three-dimensional simulations	Particle dispersion mode inversion (also referred to as scaling factor method)	Calculate the emission using the emission-concentration relationship calculated by the dispersion model, good for a single point source	Only scale the pre-assumed emissions without changing the spatial distribution, lcannot attribute to different emission locations
More advanced methods through data assimilation	4D-Variational (4D-Var approach	4D-Var is computationally efficient due to no requirement of ensemble forecast 4D-Var performs well over data sparse regions	Require abjoint model development
	Ensemble Kalman Filter (EnKF)	Quantify emission using flow-dependent error covariance between emissions and concentrations derived from short-term ensemble forecasts Meteorological fields can be simultaneously optimized, which leads to better emission estimation	Need re-cycle ensemble forecasts for Itime-varying emission sources

Mass balance methods

Gaussian plume inversion

$$[CH_4](y,z) = \left(\frac{F}{2\pi U_{\perp}\sigma_y\sigma_z} \times \exp\left(\frac{-y^2}{2\sigma_y^2}\right) \times \left(\exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right) + \exp\left(\frac{-(z+H)^2}{2\sigma_z^2}\right)\right)\right) + [CH_4]_{b,z}$$

More advance methods using 3D dispersion models and data assimilation

flux quantification techniques		Advantages	disadvantages
Conventional simple methods	Mass balance box methods	Simply quantify the emissions using the total flux out of the box covering the emission sources	Require dense spatial sampling or interpolation/extrapolation
	Gaussian plume inversion	Simply quantify the emissions using the Gaussian plume equation	Assume Gaussian distributed plume, which is often not valid in conditions with variable winds and large-scale turbulence
More advanced methods using three-dimensional simulations	Particle dispersion mode inversion (also referred to as scaling factor method)	Calculate the emission using the emission-concentration relationship calculated by the dispersion model, good for a single point source	Only scale the pre-assumed emissions without changing the spatial distribution, cannot attribute to different emission locations
More advanced metho through data assimilation	4D-Variational (4D-Var approach	4D-Var is computationally efficient due to no requirement of ensemble forecast 4D-Var performs well over data sparse regions	Require abjoint model development
	Ensemble Kalman Filter (EnKF)	Quantify emission using flow-dependent error covariance between emissions and concentrations derived from short-term ensemble forecasts Meteorological fields can be simultaneously optimized, which leads to better emission estimation	Need re-cycle ensemble forecasts for time-varying emission sources

Particle dispersion model inversion (also referred to as scaling factor method)

Figure 1. Schematic plot showing the differences between (left) 4D-Var and (right) ensemble Kalman filter in calculating the relationship between CO_2 concentrations and surface fluxes. H^T is the adjoint of the observation operator including the adjoint of transport model, while $h(\cdot)$ represent the forward observation operator including forward transport model.

CH4 flux inversion using EnKF-WRF/GHG

49,248*9 g/day at enlink site and 12,096*9 g/day at devon and El reno site

References

- Hu, X.-M., Gourdji, S. M., Davis, K. J., Wang, Q., Zhang, Y., Xue, M., . . . Crowell, S. M. R. (2021). <u>Implementation of improved parameterization of terrestrial flux in WRF-VPRM improves the simulation of nighttime CO2 peaks and a daytime CO2 band ahead of a cold front</u>. *JGR: Atmospheres*, e2020JD034362. <u>10.1029/2020JD034362</u>.
- Hu, X.-M., S. Crowell, et al. (2020), <u>Dynamical Downscaling of CO₂ in 2016 over the contiguous United States using WRF-VPRM, a weather-biosphere-online-coupled model</u>, *J. Adv. Modeling Earth Systems*, <u>10.1029/2019MS001875</u>.
- Li, X., Hu, X.-M., Cai, C. et al. (2020), <u>Terrestrial CO₂ Fluxes, Concentrations, Sources and Budget in Northeast China: Observational and Modeling Studies</u>, J. Geophys. Res.-Atmospheres, <u>10.1029/2019JD031686</u>.
- 4. Hu, X.-M., J. Hu, L. Gao, C. Cai, Y. Jiang, M. Xue, T. Zhao, and S. M. R. Crowell, 2020: Multi-sensor and multi-model monitoring and investigation of a wintertime air pollution event ahead of a cold front over eastern China. J. Geophy. Res., Conditionally accepted.
- 5. Hu, X.-M., and M. Xue (2016b), <u>Influence of synoptic sea breeze fronts on the urban heat</u> <u>island intensity in Dallas-Fort Worth, Texas</u>, *Mon. Wea. Rev.*, doi:<u>10.1175/MWR-D-15-</u> <u>0201.1</u>.
- 6. Hu, X.-M., et al. (2014), Impact of the Loess Plateau on the Atmospheric Boundary Layer Structure and Air Quality in the North China Plain: A Case Study, Science of the Total Environment, 10.1016/j.scitotenv.2014.08.053
- 7. Hu, X.-M., et al. (2013), Impact of the Vertical Mixing Induced by Low-level Jets on Boundary Layer Ozone Concentration, Atmos. Environ., 70, 123-<u>130</u>
- **8.** Hu, X.-M., J. M. Sigler, and J. D. Fuentes (2010), <u>Variability of ozone in the marine</u> boundary layer of the equatorial Pacific Ocean, J. of Atmos. Chem., 66, 117–136.