

Using the Distributed-Memory Parallel Version of ARPS

Yunheng Wang, Daniel Weber, Ming Xue

February 15, 2006

Version 1.0

Table of Content

1 Introduction... 1
2 ARPS MPI API ... 1
3 Compiling the Parallel Model... 3
4 Runtime Settings... 6

4.1 Domain Decomposition and ARPS Grid implementation 6
4.2 NAMELIST Parameter Configurations .. 8

5 Running ARPS on Parallel Machines ... 9
5.1 Splitting the data files ... 9
5.2 Running the model.. 10
5.3 Joining the data files ... 10
5.4 Job Queue Scripts ... 11

5.4.1 Network Queuing System (NQS) Script... 11
5.4.2 Portable Batch System (PBS) Queue Script ... 11
5.4.3 IBM LoadLeveler Script ... 12
5.4.4 Load Sharing Facility (LSF) Script... 13

6 Other ARPS Programs with DMP Capability... 14
6.1 DMP version of ADAS... 14
6.2 DMP version of EXT2ARPS.. 14
6.3 DMP version of ARPSPLT... 15

6.3.1 Program Settings... 15
6.3.2 Compiling and Running the Parallel Program.. 16

6.4 DMP version of ARPS2WRF ... 17
6.5 DMP version of WRF2ARPS ... 19
6.6 DMP version of ARPSEXTSND.. 21
6.7 DMP version of ARPSVERIF .. 21

 - i -

Tables
Table 1. ARPS MPI-Supported Computing Platforms .. 4
Table 2. ARPS Supported Computer Architectures .. 5
Table 3. MPI-related ARPS input file variables. ... 8
Table 4. MPI-related ARPSPLT input file variables. .. 15
Table 5. MPI-related ARPS2WRF input file variables. .. 18
Table 6. WRF file specification for WRF2ARPS2WRF... 19
Table 7. MPI-related WRF2ARPS input file variables. .. 21

- ii -

1 Introduction

The distributed-memory parallel (DMP) version of the ARPS model is based on the
MPI (Message Passing Interface) standard. Although the details of MPI implementation
are vendor specific, the ARPS source is the same as long as the MPI library follows the
MPI-1 standard or later. The DMP version of ARPS uses domain decomposition in the
horizontal (not in the vertical) with each processor assigned one subdomain or patch, and
all processors perform similar tasks on individual subdomains. The method belongs to the
SIMD (Same Instructions Multiple Data) paradigm. The DMP ARPS has been tested
successfully on many platforms that support MPI, including CRAY, NEC, SGI 2000,
IBM SP, and Alpha based servers as well as Linux clusters with 32 bit and 64 bit Intel
and AMD processors.

This document details the structure of the ARPS MPI implementation, the
procedures of code compilation and job submission. The ARPS package also provides
additional tools for splitting and combining the ARPS history and other data files.
Besides the ARPS simulation model, the parallel capability is also implemented in
several pre-processing and post-processing programs found in the ARPS package, such as
ADAS, ext2arps, arps2wrf, wrf2arps, arpsextsnd, arpsverif etc. This document also
outlines the specific feature in each of those DMP programs. At last, Simple queue scripts
are provided for submitting ARPS parallel jobs on several platforms found locally at the
University of Oklahoma and other national supercomputing centers such as the Pittsburgh
Supercomputing Center (PSC), San Diego Supercomputing Center (SDSC) and National
Center for Supercomputing Applications (NCSA).

2 ARPS MPI API

Message passing within the supported ARPS software is accomplished via calls to
the ARPS MPI wrappers developed locally and contained in source file
src/arps/mpisubs.f90. To wrap MPI subroutines has several benefits. The ARPS MPI
interface simplifies the message passing processes within the model and avoids direct
exposure of the code developer to the MPI libraries. The ARPS software contains both
the serial and parallel capabilities without pre-processing, providing a single source code
for development and diagnosing purposes. The code sharing between sequential and
parallel models is realized by introducing several dummy subroutine declarations in file
src/arps/nompsubs.f90. The Unix script, makearps, provided with the ARPS package
selects the appropriate source file for compilation, linking and executable generation.

The MPI wrappers provided in the ARPS package can be categorized as followings:

• MPI environment and variable initialization, finalization and miscellany:
mpinit_proc, mpinit_var, mpexit, inctag, mpbarrier, mpsendr, mprecvr, mpsendi,
mprecvi, mpbcastr

- 1 -

• Global reducing operations:
mpupdater, mpupdatei, mpupdatec, mpupdatel, mptotal, mptotali, mpmax0,
mpmax, mpmaxi, mpsumr, mpsumdp

• Inner boundary data exchange:
mpsendrecv2dew, mpsendrecv2dns, mpsendrecv1dew, mpsendrecv1dns,
mpsendrecv1diew, mpsendrecv1dins, mpsendrecvextew, mpsendrecvextns

• Model I/O Operations
mpimerge1dx, mpimerge1dy, mpimerge2d, mpimerge2di, mpimerge3d,
mpimerge2di, mpimerge4d, mpisplit1dx, mpisplit1dy, mpisplit2d, mpisplit2di,
mpisplit3d, mpisplit3di, mpisplit4d, mpimerge2dns, mpimerge2dew, mpisplit2dns,
mpisplit2dew

The first category is used to initialize the MPI specific variables and environment at
beginning of the code execution and to exit the MPI environment upon a stop command.
In addition, they provide several subroutines which are direct interfaces to the primary
MPI subroutines, such as mpsendr, mpsendi, mpbcastr.

The second category includes subroutines to perform global reduction and
broadcasting operations, such as those to compute the global maximum/minimum values
or to obtain a global sum.

The third category contains the primary data exchange operations for the ARPS MPI
enabled software. At every time step or small time step and at locations in which
intermediate data are required, the inner processor boundary values (only North, East,
West and South) are exchanged with the neighboring processors to update the "halo" or
"fake" zone grid points.

The fourth category (available in ARPS Version 5.1.0 or later) provides I/O support
for joining and/or splitting ARPS data files using a single process (process 0 is set as the
root processor) to finalize the split or joined file. Note that data is sent or received from
the other processors to the root process which performs the final I/O operation.

The ARPS software defines a set of global variables to support distributed memory
applications and these variables are described and declared in file include/mp.inc. The
most commonly used MPI related parameters are mp_opt & myproc. The mp_opt defines
the parallel or sequential status and the parameter myproc indicates the rank of the local
process starting from 0 to nprocs-1 for nprocs processes. The ARPS parallel software
specifies the processor with rank 0 as the root process, i.e. myproc = 0.

- 2 -

Content of file "include/mp.inc"
!---
! Message passing variables
!---

 INTEGER :: mp_opt ! Message passing option
 ! = 0, no message passing
 ! = 1, use message passing option.
 INTEGER :: nprocs ! Number of processors.
 INTEGER :: nproc_x ! Number of processors in x-direction.
 INTEGER :: nproc_y ! Number of processors in y-direction.
 INTEGER :: nproc_x_in ! The nproc_x specified in the input file.
 INTEGER :: nproc_y_in ! The nproc_y specified in the input file.
 INTEGER :: loc_x ! Processor x-location (1 to nproc_x).
 INTEGER :: loc_y ! Processor y-location (1 to nproc_y).

 INTEGER :: myproc ! Processor number (0 to nprocs-1).
 INTEGER :: max_proc ! Maximum number of processors.
 PARAMETER (max_proc=20000)
 INTEGER :: proc(max_proc) ! Processor numbers.

 INTEGER :: max_fopen ! Maximum number of files allowed open.
 INTEGER :: gentag ! message tag number
 INTEGER :: joindmp ! History dump format
 ! = 0, dump file for each processor
 ! = 1, dump one joined file.
 INTEGER :: readsplit ! External data file read option
 ! = 0, each processor do its own read
 ! = 1, do split on-the-fly
 INTEGER :: readstride ! = nprocs if readsplit == 1
 ! = max_fopen otherwise
 INTEGER :: dumpstride ! = nprocs if joindmp == 1
 ! = max_fopen otherwise

 COMMON/arpsc005/mp_opt,nprocs,nproc_x,nproc_y,loc_x,loc_y, &
 myproc,proc,max_fopen,gentag,joindmp,readsplit, &
 nproc_x_in,nproc_y_in, readstride, dumpstride

 INTEGER :: tag_w, tag_e, tag_n, tag_s
 PARAMETER (tag_w=11,tag_e=12,tag_n=13,tag_s=14)
 INTEGER :: tag_sw, tag_se, tag_nw, tag_ne
 PARAMETER (tag_sw=15,tag_se=16,tag_nw=17,tag_ne=18)

The parameters in COMMON block arpsc005 are global parameters and they will be
set by the program automatically via calls to subroutines mpinit_var & mpinit_proc and
based on the domain decomposition configuration specified when running the model (see
the section about runtime settings below). The variables specified below the arpsc005
COMMON block are constants used to create MPI message tags and they can only used
when the file mp.inc is included explicitly in the source code.

3 Compiling the Parallel Model

A Unix script, makearps, provides the user with a common interface to perform the
compile and link operations across all ARPS supported platforms. The script can be used
to compile the forecast model (ARPS) or several other programs including EXT2ARPS,
ADAS and ARPSPLT etc. The makearps script can be augmented by user supplied
options which specify the compile and link options to external libraries. The makearps
script will search for MPI library and header files. Since the location of those files are

- 3 -

platform dependent, makearps accepts two options, "-mp_inc mpi_include_path" & "-
mp_lib mpi_library_path", to specify the locations for the include file and MPI library
files, respectively. The default include file and library paths are "/usr/include" and
"/usr/library", respectively. Those paths have already been configured correctly in file
makearps to work on several local platforms at the University of Oklahoma and other
distributed memory systems at several national supercomputing centers. The current
supported platforms (at the time of this document is writing) are listed in Table 1.

Table 1. ARPS MPI-Supported Computing Platforms

Platform Center Cluster Name Architecture Note
modi* NCSA SGI Origin 2000
tun* NCSA tungsten Xeon Linux Cluster
co-login* NCSA cobalt SGI Altix Itanium2 Cluster
ds* SDSC datastar IBM P655/P690 64 bit mode
tg-login* PSC bigben Cray XT3 MPP machines
iam* PSC lemieux HP Alphaserver Cluster
tcsini PSC Compaq Tru64 Unix Cluster
schooner OSCER schooner Itanium2 Linux Cluster
boomer OSCER boomer Pentium4 Xeon Linux

Cluster

sooner OSCER sooner IBM p690 Regatta
paige CAPS paige SGI Origin 2000
weather
/regatta1
/regatta2

WDT williams

chaos WDT chaos Linux cluster
squall WDT 1450 4 proc Linux cluster
mac Va

Tech
System

 Mac OS X cluster

tasc TASC Compaq Alpha server LAM 6.5.6
MPI

ecas ECAS ecas
cray Cray Y-MP

Cray C90
(obsolete)

nec NEC SX-5 Vector machines (obsolete)

The Unix/Linux command to prepare, compile and link a parallel ARPS application
is:

$> ./makearps [options] arps_mpi

- 4 -

A parallel capable executable is created in subdirectory bin/ within ARPS root directory.
The MPI-related options for script makearps are (please refer to the ARPS User's Guide
for other options):

–mp_inc mpi_include_path
-mp_lib mpi_library_path
-m machine_type
-io bin|net|hdf|nohdf

The machine type is usually extracted from the C shell environment variable
"$HOSTTYPE" as a first attempt to matching the platform type. If the environment
variable "$HOSTTYPE" is not set in the current shell, output from command
"/bin/uname" is used to guess your machine type. makearps also accepts option "-m
mach". You can specify the machine type explicitly with this option if the script does not
properly identify the machine architecture. The currently supported ARPS MPI machine
types are:

Table 2. ARPS Supported Computer Architectures

rs600 IBM RS/6000 machines
mac Mac OS X machines
cray Cray class machines (Cray Y-MP and Cray C90)
t3e T3E class machines (NOT T3D)
hi-ux Hitachi HI-UX machines
sun4 Sun4 machines
alpha DEC Alpha machines
iris4d SGI (iris4d) machines
linux Linux machines
nec NEC SX-5 Vector machines

To modify the compile options of a particular machine type, you can make changes
directly in file makearps. You can first locate the option block for a particular machine
type by searching string "$mach == type", where "type" is a string listed above, and
change the definitions in that block. A new block for an unsupported machine may also
be added. You can base your work on any available option blocks.

To create the utilities for splitting input data files into patches for individual
processors, use command

 $> ./makearps [options] splitfiles

To create the utilities for joining the output history dumps, use command

 $> ./makearps [options] joinfiles

and/or

 $> ./makearps [options] joinfile

- 5 -

(see below).

4 Runtime Settings

Both the sequential and the parallel version of ARPS read the same runtime
configuration via a standard input (see chapter 4 in the ARPS User's Guide). In addition
to the parameters used for model execution, the NAMELIST input file arps.input also
contains a number of parameters that are used only by the parallel version. These
parameters can be set at run time without modifying or recompiling the model code. One
important feature of the ARPS parallel implementation is that only one processor, the
root processor, reads the standard input and broadcasts the input file data to the other
processors.

This section first introduces the horizontal domain decomposition feature of the
ARPS parallel model, as well as the staggered grid structure of the Arakawa C grid used
by the ARPS model. Then hints for setting those parallel specific parameters are provided.
It also highlights the relationship between the model dimension parameters when running
parallel version of the model.

4.1 Domain Decomposition and ARPS Grid implementation

The ARPS model employs the mode-splitting time integration technique introduced
by Klemp and Wilhelmson (1978), i.e. the large time step is used to compute advection
and mixing terms and the small time step used to compute the new wind velocity and
pressure due to sound waves. The large time step integration uses the leap-frog time
differencing scheme. The small time step integration uses a Crank-Nicholson scheme
which solves the vertical velocity (w) and pressure (p) equations either implicitly, using a
tri-diagonal solver, or explicitly in the vertical direction. The vertical implicit solution
technique used to solve w and p also is an option for updating variables associated with
the vertical subgrid scale mixing. Furthermore, many of the physical processes such as
radiation and cumulus parameterization require column-wise computations that are non-
local in the vertical direction. Therefore, the domain decomposition strategy used in the
ARPS model is carried out efficiently in the horizontal direction. With the fourth-order
advection and/or numerical diffusion, five grid points are involved in a single time step in
each horizontal direction. However, we chose to implement these calculations in two
steps, each involving only three grid points, so that only one "fake" zone is needed at
subdomain boundaries. Of course, data in the single "fake" zone has to be updated after
each of these two steps, implying communication between processors.

The ARPS domain decomposition scheme is illustrated in Figure 1. Figure 1a
contains 4 processes with a 2x2 processor configuration. Figure 1b shows the inner
processor relationship between 3 processors in x-direction and the same inner processor
relationship holds for multiple processors in y-direction.

- 6 -

ny-2
ny-1
ny

myproc = 1 myproc = 0

myproc = 2 myproc = 3

Proc 0/1 2

myproc = 0

1
NX NX-1 NX-2

nx nx-1 nx-2
1 2 3

3

S: Scalar point U: U staggered point
V: V staggered point

S S S S S U U U U U U
V V V

V V V V V

V V
S S S S S

S

S S

S S S S

S S S

V V V

VVV

V V

V V

U U U U U U

U U U U U U

UU U U U U

V V V

1 2 3 nx-2 nx-1 nx
nx-1 nx nx-2

Physical
boundaries
or valid
sub-domain

1

2

3

ny-2

ny-1

ny

ny-1
ny-2

1
2
3

Proc 0/2

ny

1
2
3

Figure 1a. Illustration of ARPS domain decomposition with a 2x2 processor configuration

1 NX

1 2

3

nx-1 nx nx-2

21 nx-2 nx-1

nx

nx

1 2 3

U U US S

S SU

U

U

U

U

U

U

U

U

U

U

U

S

S

S S

S

S

VV

V

V

V

V

V V

V

V

V

V
U

U

U

U

UU

U

U

U

U

S

S

S

S

S

V

V

V

V

V

V

V

V

V

V

V

V

S

S

S

S

S

Physical Domain XL

U

U

U

U

U

Figure 1b. Illustration of inner processor relationship in X direction

The ARPS horizontal grid is defined over a staggered Arakawa C grid with one more
fake point ("halo" or "fake" zone) for the scalars and velocity components outside the
physical boundaries (2 – nx-1 in the x-direction, 2 – ny-1 in the y-direction) to facilitate
the implementation of boundary conditions and the message passing between neighboring
processes. The length of the model physical dimension within each processor or during a

XL nx x YL ny-3 y x ysingle processor application is =(-3)d (=()d) in the and directions,
respectively.

- 7 -

4.2 NAMELIST Parameter Configurations

The most significant parameters for the parallel ARPS model are the global domain
ich represent the number of

processors in the X and Y direction, respectively. The total number of processors used in
a pa

e = (ny-3)*nproc_y + 3

Note th use variables nx and ny for representing
the local gr NAMELIST input file arps.input where
the values of nx and ny represent global dimension sizes. The model handles the
conv

grid size nx, ny and the values of nproc_x & nproc_y wh

rallel run is nproc_x*nproc_y. The values of nx and ny represent the ARPS global
grid size for both the parallel and sequential runs. However, the choice of the global
number of grid points is not arbitrary for parallel runs. For load balance purposes, the size
of the global number of grid points in the x and y directions must be divisible by nproc_x
and nproc_y, respectively. For the case in which the global number of grid points is not
divisible by nproc_x or nproc_y, the size of the global domain will be adjusted to become
divisible by nproc_x (nproc_y) in the x-direction (y-direction) automatically. The grid
size per processor, as shown in Figure 1 and 2, has the following relationship with the
global grid dimensions:

global_x_size = (nx-3)*nproc_x + 3
global_y_siz

at all sources inside the ARPS model
id size. The only exception is in the

ersion from global grid sizes to local grid sizes automatically for the users in
subroutine initpara (see file src/arps/initpara3d.f90). The user sets the values of nproc_x
and nproc_y depending on the size of your model domain and the available resources on
the computing platform. As a rule of thumb, the total number of processors should be a
power of 2 but is not required. The total number of CPUs declared in NQS scripts or the
command-line parameter to "-np" of mpirun (or "-procs" of poe) must be the same
number as nproc_x*nproc_y. Table 3 lists all the parameters that must be set before
running the parallel version of ARPS.

Table 3. MPI-related ARPS input file variables.

Variable Meaning Defaults
nproc_x 1 Number of processors in the X direction
nproc_y 1 Number of processors in the Y direction
ma Maximum number of files allowed open 8 x_fopen
inisplited joined input data

 split input data
Flag indicate whether input file are split
or not (see below)

0 –
1 –

dmp_out_joined dump split files Flag for history file dumping 0 –
1 – join and dump

The maximum numb writing mu
saturating the network and disk sub-systems, especially on larg g
platforms. Users can specify the number of open files with parameter max_fopen. Small
clus

er of open files for reading or st be limited to avoid
e parallel computin

ter will perform best with a max_fopen = 2 to 4 and large parallel computing centers
have the capacity to allow up to 20-30 simultaneous writes/reads. The ARPS model,
however, will set max_fopen = nproc_x*nproc_y automatically when it is demanded to

- 8 -

read in a sounding file for initopt = 1, no matter what value is set for max_fopen in file
arps.input.

After ARPS version 5.1 and later, a new feature was implemented in the ARPS
model to split the input data and join the output data on-the-fly. With this new feature, it
is not necessary to split the data files before starting the parallel model, or to join the data
files after the model simulation (assumes that this is a model run and not ext2arps etc) is
completed. If variable inisplited = 1 is defined within the ARPS input file, the input data
files, including files specified by parameters: inifile, inigbf, exbcname, terndta, sfcdtfl,
soilinfl, rstinf etc. (see chapter 4 of the ARPS User's Guide), were split using the utility
splitfile (see below). It is the original behavior of the parallel ARPS model before version
5.1.0. However, if inisplited = 0, the auto-split feature newly implemented in the ARPS
model will split the input data. With this new feature, the root processor (processor with
rank 0) will read the input data files that contain data covering the global domain and
then split the read-in data into smaller patches and distribute those patches to their
corresponding processors.

Similarly, the flag dmp_out_joined controls the joining of data for writing. If
dmp_out_joined = 1, data patches from all processors are collected by the root processor
for j

 the input file, running a parallel
simulation of the ARPS model may involve three steps, i.e. splitting the data files,
runn

 files

t file, the external data files must be split prior to
ovides a utility splitfiles to

split

Note th rmatted binary files and HDF 4 files at present.
The split files have the same filename as the input files except that their names are
appended with a 4 digit number denoting its location in the global processor grid. For

oining and writing to a single file. The joined data file contains data from the global
domain. If dmp_out_joined = 0, the ARPS data files will be written out in split file form
(one file per processor) and can be joined at a later time using joinfiles (see below).

5 Running ARPS on Parallel Machines

Depending on the runtime parameters specified in

ing the model and joining the data files. On some platforms, the parallel ARPS can
be run through an MPI startup script, such as mpirun, mpiexec, or poe etc. On
supercomputers or clusters with job scheduling capabilities, it is required to submit your
MPI application to a Network Queuing System (NQS) or scheduler, such as the Portable
Batch System (PBS) scheduler, Load Sharing Facility (LSF) or the Loadleveler job
management system. This section also provides several script samples for job submission
on those scheduler systems.

5.1 Splitting the data

If inisplited = 1 in the ARPS inpu
the execution of the parallel ARPS. The ARPS package pr

 ARPS data files. Splitfiles will read the NAMELIST input file for filename
information and split the files one by one. The command is:

$> bin/splitfiles < arps.input

at splitfiles only supports unfo

- 9 -

exam

and the prog will interactively ask you for the HDF 4 filename to be split.

5.2 Running the model

To execute the parallel version of the ARPS model, the user can, if the system allows,
le, arps_mpi through a MPI submission script, such as

mpirun, mpiexec, and poe on IBM/AIX systems or prun for the HP Alpha servers on
PSC

red that only one processor (the root
proc uration parameters. The
option "-stdinmode 0", available in the IBM Parallel Operating Environment, instructs
POE

ode poll -buffer_mem 256M < arps.input > arps.output

Env

5.3

The ARPS tool joinfiles should be used to obtain a set of combined history data files
nning the model. The tool will read the NAMELIST

input file for the runname information and the frequency of history writes and combine
all t

joinhdf. The
ARPS pack f, which combines a complete set of binary split
files into a single HDF 4 file.

$> bin/joinbin2hdf

ple, with the configuration in Figure 1a, we will get four ARPS initial files which
correspond to the 4 processors used, arps_test.bin000000_0101,
arps_test.bin000000_0102, arps_test.bin000000_0201 and arps_test.bin000000_0202.

To split HDF-4 files manually without providing the NAMELIST input, you can also
run command

$> bin/splithdf

ram

submit the parallel ARPS executab

. For example, to perform a 16 processor ARPS simulation on a SGI 2000 or a PC
running Linux system:

$> mpirun –np 16 bin/arps_mpi < arps.input > arps.output

As we have mentioned before, it is requi
essor with rank 0) reads the standard input channel for config

 to allow only the processor with rank 0 read the standard input. The recommended
command for poe is:

$> poe bin/arps_mpi -procs 16 -eager_limit 64k -stdinmode 0 -stdoutmode
unordered -wait_m

For instructions about those options, please refers to "POE: Parallel [Operating]
ironment Documentation" from IBM.

 Joining the data files

if dmp_out_joined = 0 is set while ru

he history files over all processor patches into a single file covering the global
domain. Joinfiles supports unformatted binary files and HDF 4 formats.

$> bin/joinfiles < arps.input

To join one set of files at a time, you can use ARPS tools joinfile or
age also provides joinbin2hd

- 10 -

The

Most s n interactive job limit and queuing systems allow you to
run larger and longer jobs in a non-interactive manner. On some computer systems, all

ueue.

stem (NQS) Script

 obsolete Cray T3D is:

#QSU
#QSU

#QSUB -o $AFS/arps.log

 Mandatory qsub options specifying command
SUB -l mpp_p=2 # PE time limit and number of application PEs.

t=9000 # Strongly recommended option specifying
ime limit.

#QSUB -o t3e.output # Optional qsub option specifying the output

#QSU

To check your job status, use command

$> qstat -a

5.4.2 Portable Batch System

SIX-compliant suite of commands intended
to manage jobs running on multiple computer servers. Many well-known supercomputer
systems are managed by the PBS scheduler, such as the Pentium4 Xeon Linux Cluster
(boomer.oscer.ou.edu) at OU and the HP Alpha Cluster (lemieux.psc.edu) at PSC. A
typical script is as follows:

 user will be prompted to provide the base filename.

5.4 Job Queue Scripts

upercomputers have a

applications/jobs must be submitted to the batch system/q

5.4.1 Network Queuing Sy

Cray computer systems use the Network Queuing System (NQS) to schedule jobs.
The job resource requirements and execution environment are defined in a shell-like
script with additional keywords. An example NQS script for the

#QSUB -lM 7Mw -lT 15000
#QSUB -q mpp

B -l mpp p=16 # sets the number of processors
B -l mpp t=9000 # sets the computation time limit for each

 # individual processor
#QSUB -s /usr/local/bin/tcsh
#QSUB -eo

cd $workdir
bin/arps_mpi < arps.input >! arps.output

An example NQS script for the Cray T3E is:

#QSUB -lT 15000 #
#Q
#QSUB -l mpp_
 # application PE t

 # file name.
B -eo

To submit your NQS job, type:

$> qsub NQS_script_file

(PBS) Queue Script

The Portable Batch System (PBS) is a PO

- 11 -

#!/bin/csh

#PB
#PB

 # Note that "##PBS" will be ignored by PBS

rr_file_name

Run the model on boomer.

e model on Lemieux

un –N ${RMS_NODES} –n ${RMS_PROCS} $execode < $inputf >& $outputf

5.4 Script

LoadLeveler is a network job management and scheduling system developed by IBM.
Although the environment can include heterogeneous clusters, it is
mainly used on IBM RS/6000 SP systems, such as the IBM Regatta p690 system
(sooner.oscer.ou.edu) with Power4 symmetric multiprocessors (SMP) at OU. A typical
NQS LoadLeveler script is:

#!/bin/sh

Batch Job Specifications

S -l walltime=04:00:00 # Wall clock time requests
S -l nodes=2:ppn=2 # Requests 2 nodes with 2 processors each

 # works on boomer, a Linux Xeon cluster
##PBS –l rmsnodes=1:4 # On Lemieux, requests 4 processors on 1 node

#PBS -q queue_name # Queue name, it is defautl_q on boomer,
 # can be batch or debug on Lemieux
##PBS -A account_string
#PBS -o stdout_file_name
#PBS –e stde
#PBS -N your_job_name

set dir_name = /home/xxxx/arps5.2
set execode = /home/xxxx/arpss5.2/bin/arps_mpi
set inputf = arps.input
set outputf = arps.output

set echo

cd $dir_name

#mpirun $execode < $inputf >& $outputf

Run th

#pr

To submit the job,

$> qsub pbs.script

To check the job status,

$> qstat

To kill the job,

$> qdel <jobid>

.3 IBM LoadLeveler

LoadLeveler clusters

- 12 -

How much computing resources a
ConsumableCpus denotes number

re needed (maximum)
of cpu required per process

H

ents = /home/xxxx/arps5.2/bin/arps_mpi -procs 4
inmode 0 -wait_mode poll -buffer_mem 256M

and standard error

 pass to poe
SHARED_MEMORY = yes

ve.

To cancel a job,

cel <jobid>

5.4 ript

ted queuing system that can be used to unite a
cluster of computers, even in a heterogeneous environment, into a single virtual system to
obtain a more flexible com ce on the network. The newly implemented
Itan chooner.oscer.ou.edu) at OU was instrumented with the LSF
queuing system. A simple LSF script looks like the following:

#!/bin/csh
#BSUB -q normal # Queue name
#BSU
#BSUB –x # Request exclusive access
#BSUB -n 4 # use 2 nodes, 2 CPU per node
#BSUB -R "span[ptile=2]" # states 2 processors per node are desired
#BSUB -o /home/xxxx/arp5.2/out.%J
#BSUB -e /home/xxxx/arp5.2/err.%J
#BSUB -u xxxx@ou.edu

 @ resources = ConsumableCpus(1) ConsumableMemory(100mb)
ow many seconds of wall clock time are needed (maximum)

@ wall_clock_limit = 7200
The filename (including full path) of the executable.
@ executable = /usr/bin/poe

Command line arguments

!!! The following arguments must be in one line
@ argum
 -eager_limit 64k –std

Files to redirect standard input, standard output
@ input = /home/xxxx/arps5.2/arps.input
@ output = /home/xxxx/arps5.2/arps.output.$(Cluster)
@ error = /home/xxxx/arps5.2/arps.err.$(Cluster)
Poe-related information for LoadLeveler
@ class = parallel
@ job_type = parallel
@ job_name = your_job_name
@ tasks_per_node = 4
Environment variables to
@ environment = COPY_ALL; MP_HOLD_STDIN=yes; MP_

This command tells LoadLeveler to execute the command described abo
@ queue

To submit the job script to LoadLeveler,

 $> llsubmit loadleveler.script

To check your job status,

 $> llq –s <jobid>

 $> llcan

.4 Load Sharing Facility (LSF) Sc

LSF is a general purpose distribu

puting resour
ium2 Linux cluster (s

B -a mvapich

- 13 -

#BSUB -W 01:00
#BSUB -J job_name # Declare a job name

set

ust be executable (chmod +x lsf.script) and the
pt) operator in the submittal command is required.

To remove a job from the LFS system, execute:

6 MP Capability

Besides the AR on model, many ARPS pre-processing and post-
processing programs can be run on distributed-memory platforms using the same

SND and
ARPSVERIF. Because of the difference in capability and complexity of each program,
each n. This
section describes the specific features in the each parallel version of these programs. For
a general descripti ach program, please refer to their respective user's guides.
This pilation and job submission for each
para

6.1 DMP vers

 wrkdir = /home/xxxx/arps5.2
set executable = /home/xxxx/arps5.2/bin/arps_mpi
set input = arps.input
set output = arps.output

cd $wrkdir
mpirun.lsf $executable < $input >! $output

To submit the job script to LSF queue:

$> bsub < lsf.script

Remember that the script file (lsf.script) m
redirection (bsub < lsf.scri

To display information about pending, running and suspended jobs, execute:

$> bjobs

$> bkill <jobid>

Other ARPS Programs with D

PS weather simulati

message passing interface developed in the ARPS package. These parallel programs are
ADAS, EXT2ARPS, ARPSPLT, ARPS2WRF, WRF2ARPS, ARPSEXT

 one has its own special requirements in program settings and job submissio

on about e
 section also outlines the procedures of code com
llel version of the programs.

ion of ADAS

To be added by Kevin Thomas

6.2 DMP version of EXT2ARPS

To be added by Kevin Thomas

- 14 -

6.3 DMP version of ARPSPLT

ARPSPLT is a vector graphics plotting program provided within the ARPS package.
ARPSPLT reads in the ARPS history format, performs various analyses and generates

profiles. The program is described in Chapter 10 of
the ARPS User's Guide. Since the ARPS version 5.1, the graphic package ZXPLOT on
which ARPSPLT is based, is distributed within the ARPS package. The DMP capability
of ARPSPLT was added since ARPS version 5.0 (IHOP_4) and later. This parallel

 the CAPS-PSC spring forecast programs in
2005 and significant enhancements were added since then (ARPS version 5.2 and later).

The parallel version of plotting program reads the same NAMELIST input file as
sequ

graphic output as 2-D fields and 1-D

plotting program has been fully tested during

6.3.1 Program Settings

ential program mentioned in the ARPS User's Guide. The MPI-specific parameters
are listed in the following table.

Table 4. MPI-related ARPSPLT input file variables.

Variable Meaning Defaults
nproc_x Number of processors in the X direction 1
nproc_y Number of processors in the Y direction 1
max_fopen Maximum number of files allowed to be 8

opened
nproc_node Number of processes allocated on one

node
0

readsplit Flag indicate whether input file are split
or not (see below)

1 – joined input data
0 – split input data

nprocx_in Number of processor for data in X 1
direction

np Number of processor for data in Y 1 rocy_in
direction

 The parameters npr m eanings as those
defined in section 4.2.

 scenar first scenario, the
ARPS history file(s) to ile that contains data covering the global
dom the param o
0) to read the data and th data into smaller patche e
patc r corresp meters nprocx_in,
nprocy_in, max_fopen an ode are ignored by the program. The program will set
max roc_x*np

In the second scenario, the program reads ARPS history data in split file form, i.e.
read

oc_x nproc_y max_fopen, and have the sa e m

There are two ios to run the parallel plotting program. In
be plotted is a big f

 the

ain. Then eter readsplit should be 1. It instructs the r
en split the read-in

ot process (with rank
s and distribute thos

hes to thei onding processors. With this scenario, pa
d nproc_n

ra

_fopen = np roc_y and nproc_node = 1 automatically.

split=0. The number of split data files can be the same as the number of processors to
be run, such that

- 15 -

readsplit = 0,
nprocx_in = nproc_x,
nprocy_in = nproc_y,

It means that each processor reads its own data file, no split is needed.

The program also supports a case when the ARPS history data files are generated
using more processors than the number of processors for ARPSPLT run. For example,
the user runs the ARPS simulation model using more processors because the simulation
mod

rocy_in, however, cannot be arbitrary and they must be multiples of
nproc_x and nproc_y, respectively,

where n and m are any natural numbers.

se ARPSPLT is an I/O intensive program. The large
number of opened files on one node may saturate the network and the disk sub-systems,
for example the nodes on the HP Alpha servers at PSC, if more than one processes are
allocated on t (nprocy_in) is much larger than
nproc_x (nproc_y). The parameter nproc_node, however, is used to order ARPSPLT I/O

ntrol the allocation of parallel processes on
computing nodes. It is the PBS option "-rmsnodes rols the tion of

el is a computation-demand program. The plotting job, however, is usually much
easier to be scheduled when less processor is claimed from the system. The parameter
nprocx_in and np

readsplit = 0,
nprocx_in = n*nproc_x,
nprocy_in = m*nproc_y,

When readsplit = 0, the program uses either nproc_node or max_fopen to control the
number of simultaneous file opened. The first case is nproc_node = 0 or 1, the parameter
max_fopen is used just as it has been used in section 4 of this document. The second case
is nproc_node > 1, the parameter max_fopen is ignored by the program. The parameter
nproc_node is used to specify the number of processes allocated on each computing node.
This parameter was introduced becau

he node, especially when nprocx_in

operations only. It has no way to co
" that cont actual alloca

processes on nodes. So it is required that the PBS parameter ${RMS_PROCS} should be
consistent with the parameter nproc_node specified in the input file.

NOTE: The parameter nproc_node was introduced for advanced users only. If you are
not quite sure how it works, it had better be 0 always.

6.3.2 Compiling and Running the Parallel Program

Similar to the ARPS main program, the compilation and linking of parallel version
of ARPSPLT is handled by the UNIX script makearps. For ARPSPLT to produce CGM
metafile output (NCAR Graphics required), the command is:

$> makearps [options] arpspltncar_mpi

and to produce PostScript graphic output, the command is:

$> makearps [options] arpspltpost_mpi

- 16 -

The generated executable programs are arpspltncar_mpi and arpspltpost_mpi and they
are put in subdirectory bin/ within the ARPS root directory.

d always submitting parallel
jobs to a job queue, especially when the job needs many computer resources. To submit
the plott ific job script is needed. Basing on the
samples mentioned in Section 5, the executable should be replaced with either

ut file should be arpsplt.input.

To on a PC running Linux system with

t.input > arpsplt.output

or

6.4 DMP version of ARPS2WRF

vided in the ARPS package since version 5.0.0IHOP_6 and it
performs the same functions as program real.exe in the WRF package. Working together
with
arps2wrf) is used to replace both the WRFSI and real.exe steps when processing the

PS model data for WRF simulation. The DMP version of ARPS2WRF is possible
because both W
grid sor.

e WRF grid
MP version

RF grid and ARPS grid are the same, i.e.
RF NAMELIST input file (the ARPS2WRF

Use

 and linking of the file or its no-mpi counterpart

Similar to the steps mentioned in Section 5, the parallel plotting program can be run
on front end or be submitted to a job queue. It is recommende

ing job to a system queue, a platform spec

arpspltpost_mpi or arpspltncar_mpi and the standard inp

submit an interactive job, for example,
MPICH implementation,

$> mpirun –np proc_num bin/arpspltpost_mpi < arpspl

$> mpirun –np proc_num bin/arpspltncar_mpi < arpsplt.input > arpsplt.output

where option "–np proc_num" specifies the number of processors to be used.

ARPS2WRF was pro

 programs ext2arps and wrfstatic, the ARPS processing (wrfstatic, ext2arps, and

AR
RF horizontal grid and ARPS horizontal grid are defined over Arakawa-C

. This common feature ensures minimum message passing between each proces
The sequential program arps2wrf also supports horizontal interpolations if th
is not defined over the same physical domain as the ARPS grid. However, D
of arps2wrf is only supported when both W
parameter use_arps_grid = 1 in the ARPS2W

r's Guide for details).

Since WRF data does not contain fake zones in the I/O process, the size of WRF
staggered grid (nx_wrf/ny_wrf) is two points less than the size of ARPS grid (nx/ny) in
each horizontal direction (x-direction and y-direction, see section 4 for description about
the ARPS fake zones). The size of WRF scalar grid is three points less than the size of
ARPS grid (nx/ny). In order to conform to the ARPS programming standards, all WRF
arrays in the program source are declared with dimension (nx_wrf, ny_wrf, nz_wrf). This
means that ARPS2WRF has introduced a one point fake zone to the WRF mass or scalar
arrays. To facilitate the message passing for these one-fake-zone arrays, a set of MPI
wrappers are written specifically for doing message passing with WRF arrays and they
are located in the source file src/arps2wrf/wrf_mpsubs.f90. The UNIX script makearps
handles the compilation

- 17 -

(src

executable should be specified to be
arp arps2wrf.input. If it is an interactive
job, execute the comm

arps2wrf_mpi < arps2wrf.input

/arps2wrf/wrf_nompsubs.f90) automatically. Note that all subroutines defined in both
source files are prefixed with string "wrf_" to distinguish them from the general ARPS
message passing wrappers with 3 point fake zone.

To compile the DMP version of ARPS2WRF,

$> makearps [options] arps2wrf_mpi

where options can be any makearps options mentioned in the ARPS User's Guide.
Please note that ARPS2WRF cannot read HDF4 formatted ARPS history files because of
a conflict between netCDF 3.0 library and HDF4 library. See ARPS2WRF User's Guide
for details.

The parallel program arps2wrf_mpi can be run just as all other ARPS MPI
programs. If it is submitted to a job queues, the

s2wrf_mpi and the standard input file should be
and:

$> mpirun –np number_of_processor

Table 5. MPI-related ARPS2WRF input file variables.

Variable Meaning Defaults
nproc_x Number of processors in the X direction 1
nproc_y Number of processors in the Y direction 1
readsplit Flag indicate whether input file are split or not 1 – joined input data

0 – split input data
nprocx_in Number of processor for data in X direction 1
nprocy_in Number of processor for data in Y direction 1

The MPI parameters to be set in the NAMELIST input file are listed in the table 5.
Parameters nproc_x escribed in section
4. Parameter readsp ed to ARPS2WRF
are or in joined form. If r 1, only the root processor of the program

reading a it = 0, however, the program
_mpi can . The nu ber of data patches
 same as

dsplit
ocx_in
ocy_in

 nprocx_in = n*nproc_x,

 and nproc_y have the some meanings as they are d
lit indicates whether the ARPS history files provid

in split form eadsplit =
does file- nd the data is split on-the-fly. If readspl
arps2wrf read ARPS history data in split file form m
can be the the number of processors to be run, such that

 rea = 0,
 = 1, npr

 npr = 1,

Otherwise, the number of ARPS data patches can be larger than the number of
processors to be run. Parameter nprocx_in (nprocy_in) specifies the number of data
patches in x-direction (y-direction). It is required that nprocx_in (nprocy_in) must be
divisible by nproc_x (nproc_y). i.e.

readsplit = 0,

- 18 -

 nprocy_in = m*nproc_y,

where n and m are any natural numbers.

NOTE: The generated WRF files, wrfinput_d01 and wrfbdy_d01 are always in joined

 format or split format. The support WRF2ARPS
history CDF format, WRF internal binary format and PHDF5 format.

ion of WRF2ARPS is realized based on the same
milar grid and ARPS horizontal grid. So it is required that

 1 should be specified in order to run DMP

input/wrf2arps.input. All the parameters in file input/wrf2arps.input contain the same
hose provided in file input/arps.input and
 Guide, except for the NAMELIST block

&wr

format.

6.5 DMP version of WRF2ARPS

WRF2ARPS is a similar program as EXT2ARPS, except that WRF2ARPS reads
WRF history files in either joined

 file formats are net
As in ARPS2WRF, the DMP vers
si ity between WRF horizontal
NAMELIST parameter use_wrf_grid =
version of WRF2ARPS.

Program wrf2arps and wrf2arps_mpi reads the same runtime configuration file

variables and have the same meanings as t
described in chapter 4 of the ARPS User's

fdfile. This subsection first defines the variables in NAMELIST block &wrfdfile and
then provides some hints to set up MPI parameters for DMP version of WRF2ARPS.

Table 6. WRF file specification for WRF2ARPS2WRF

Variable Meaning Defaults
dir_extd Directory of WRF data files ./
init_time_str Initial time string of WRF model

simulation
'YYYY-MM-DD_hh:mm:ss'

io_f

format
DF file in split

form

orm WRF data file format = 7 (default)
1 – WRF internal binary

format
5 – PHDF 5 format
7 – netCDF format
101 – Binary file in split

107 – netC
at

start_time_str first Time string to indicate the
WRF data file

'YYYY-MM-DD_hh:mm:ss'

history_interval ry file output time 'DD_hh:mm:ss' WRF histo
interval

end_time_str Time string to indicate the last
WRF data file

:ss' 'YYYY-MM-DD_hh:mm

frames_per_outfile Output time per WRF data file 1

- 19 -

 Since WRF history file names are based on the model simulation time, WRF2ARPS
uses parameters start_time_str, history_interval, end_time_ to
determine the WRF file names to be read. For example,

td = '

inte
 end_time_str = '1998-05-25_06:00:00',

_per_o

WRF2ARPS reads the :

in split form and
spec

str and frames_per_outfile

dir_ex ./',
 start_time_str = '1998-05-25_00:00:00',
 history_ rval = '00_01:30:00',

 frames utfile = 1,

 following files

./wrfout 1998-05-25-00:00:00, start_time_str

./wrfout 1998-05-25-03:00:00,

./wrfout 1998-05-25-01:30:00,

Parameter io_form specifies the WRF history file format and the current supported
formats in WRF2ARPS are WRF internal binary format, netCDF format, and PHDF5
format. Please note that PHDF5 format is only support when the program is in MPI mode,
just as it has been supported in the WRF system. When io_form > 100, WRF files are in
split form with a four-digit processor rank appended to each WRF file name. For WRF
version earlier than V2.1.0, the user should plan in advance if split WRF files are to be
read because of the difference in domain decomposition schemes used in the WRF
system and the ARPS system. The required modifications within the WRF model source
is described in file input/wrf2arps.input. It is not a problem any more since WRFV2.1.1
and later, thanks to the improvement in WRF domain decomposition.

Parameter init_time_str specifies an initial time string that denotes the initial time of
the WRF model simulation. It is used only for constructing the ARPS file names and has
nothing to do with the WRF data files. It was introduced to handle the cases when the
first WRF data file (specified by parameter start_time_str) is not at the initial simulation
time of the WRF model.

Table 7 lists all the variables that should be set or checked before running DMP
version of WRF2ARPS. Many parameters are the same as in all other ARPS MPI
programs, such as nproc_x, nproc_y, max_fopen, nprocx_in, nprocy_in, dmp_out_joined.
The only new parameter is io_form that is used to replace parameter readsplit in other
MPI programs. When io_form > 100, all WRF history files are

ifications of parameter nprocx_in and nprocy_in are required. Otherwise, WRF data
files are in joined form and the read-in data should be split on-the-fly.

./wrfout 1998-05-25-04:30:00,

./wrfout 1998-05-25-06:00:00, end_time_str

start_time_str+
i*history_interval*frames_per_outfile

i = 1, 2, …, n
rt_time_str)/(history_interval*frames_per_outfile) n = (end_time_str – stadir_extd

- 20 -

Table 7. MPI-related WRF2ARPS input file variables.

Variable Meaning Defaults
nproc_x Number of processors in the X direction 1
nproc_y Number of processors in the Y direction 1
max_fopen Maximum number of files allowed to be

opened
8

io_form WRF data file format = 7 (default)
nprocx_in Number of processor for data in X direction 1
nprocy_in Number of processor for data in Y direction 1
dmp_out_joined Flag for ARPS outputs 1 – joined ARPS file

0 – split ARPS files

NOTE:

• In MPI t be 1.
RF P
PI m

 version compiled as all other pr ecuting

a mpi

The generated program wrf2arps_mpi can be executed interactively,

$> mpirun –np number_of_processor wrf2arps_mpi

or be subm

6.6 DMP version of ARPSEXTSND

6.7 DM

 mode, parameter frames_per_outfile mus
• W

M
HDF5 files are always in one joined form and they are supported in
ode only.

DMP of WRF2ARPS can be ograms by ex
command:

$> make rps [options] wrf2arps_

itted through a job script as has mentioned in section 5.

To be added by Kevin Thomas

P version of ARPSVERIF

To be added by Kevin Thomas

- 21 -

	1 Introduction
	2 ARPS MPI API
	3 Compiling the Parallel Model
	4 Runtime Settings
	4.1 Domain Decomposition and ARPS Grid implementation
	4.2 NAMELIST Parameter Configurations

	5 Running ARPS on Parallel Machines
	5.1 Splitting the data files
	5.2 Running the model
	5.3 Joining the data files
	5.4 Job Queue Scripts
	5.4.1 Network Queuing System (NQS) Script
	5.4.2 Portable Batch System (PBS) Queue Script
	5.4.3 IBM LoadLeveler Script
	5.4.4 Load Sharing Facility (LSF) Script

	6 Other ARPS Programs with DMP Capability
	6.1 DMP version of ADAS
	6.2 DMP version of EXT2ARPS
	6.3 DMP version of ARPSPLT
	6.3.1 Program Settings
	6.3.2 Compiling and Running the Parallel Program

	6.4 DMP version of ARPS2WRF
	6.5 DMP version of WRF2ARPS
	6.6 DMP version of ARPSEXTSND
	6.7 DMP version of ARPSVERIF

